1.204 Lecture 20

Linear systems:
Gaussian elimination
LU decomposition

Systems of Linear Equations

3Xg + X, - 2X, = 5
2X, + 4X; + 33X, — 35
X - 3X; = -5
3 1 -2| [X 5
2 4 3| [X]-135
1 -3 0f |%X, -5
A X = Db
3 x3 3x1 3x1

Algorithm to Solve Linear System

: ANWANVAN Xo by /\ =a;
Create matrix A A A X4 = b1 ij
JANWANVAN X2 b,
A X b
VANRVAN Xo | b’y A ==
Forward solve | O AN Xy | = | b’y
0 0 X, b,
A’ X b’
ARA Xo b’y | = Xo
Back solve 0 /\ X, | = b, | — x,
0 O X2 b, | — X,
A X b’

Gaussian Elimination: Forward Solve

3 1) 5 Form Q for convenience
_ Do elementary row ops:
Q= 2 4 3 35 Multiply rows
1 -3 0 -5 Add/subtract rows
A b
Make column O have zeros below diagonal
Pivot= 2/
Pivot= 1/37] 3 1 -2 S

0 10/3 13/3 95/3| Row 1'=row 1-(2/3) row 0
0 -10/3 2/3 | -20/3| Row 2'=row 2 - (1/3) row 0

Make column 1 have zeros below diagonal

3 1 -2 5
Pivot= -1 0 10/3 13/3 | 95/3
0 0 15/3 75/3| Row 2"=row 2'+1*row 1

Gaussian Elimination: Back Solve

1 -2 5
10/3 13/3| 95/3

oo w

0 15/31 7573 (15/3)x,=(75/3) X,=5

1 2| 5 /

10/3 13/3] 95/3| (10/3)x,+ (13/3)*5=(95/3) x,=3

OO |Ww

0 15/3] 75/3 /

1 -2| 5 | 3x%+1*3-25=5 Xo = 4

10/3 13/3| 95/3
0 15/3| 7573

A Complication

0 1 -2 5
2 4 3 35 Row 1'=row 1 - (2/0) row 0
1 -3 0 -5

Exchange rows: put largest pivot element in row:

2 4 3 35
0 1 -2)
1 -3 0 -5

Do this as we process each column.

If there is no nonzero element in a column,
matrix is not full rank.

Gaussian Elimination

public class Gauss {
public static double[] gaussian(double[][] a, double[] b) {
int n = a.length; // Number of unknowns
double[1[q = new double[n][n + 1];

for (int i =0; 1 <n; i++) {
for (int j = 0; j < n; j+t) // Form g matrix
alillil= alilll;
) qLil[n]= bLil;

forward_solve(q); // Do Gaussian elimination
back_solve(q); // Perform back substitution
double[] x= new double[n]; // Extract column n of q,

for (int 1 = 0; i < n; i+d) // which contains the solution >
x[i]1= q[i]1[n];

return Xx;

Forward Solve

private static void forward_solve(double[][]1 q) {
int n = g-length;
int m= g[0]-length;

for (int i =0; i <n; i++) { // Find row w/max element in this
int maxRow = i; // column, at or below diagonal
for (int k =i + 1; k < n; k++)
if (Math.abs(q[k][i1) > Math.abs(g[maxRow][il))
maxRow = k;

if (maxRow I= i) // If row not current row, swap
for (int j = i; j < m; j++) {
double t = q[ilL[}];

alillil= g[maxRow][il;
qlmaxRow][§]= t;

for (int j =1 +1; j<n; j+) { // Calculate pivot ratio
double pivot = q[j1[il 7/ qlilLil:
for (int k = i; k < m; k++) // Pivot operation itself
a1kl -= qLil[K] * pivot;

Back Substitution

private static void back_solve(double[][] q9) {
int n = q.length;
int m= q[0]-length;

for (int p=n; p < m; pt+) { // Loop over p columns
for (int J =n-1; j >=0; j—-) { // Start at last row
double t = 0.0; // t- temporary

for (int k = j + 1; k < n; k++)
t += qOJ1[K] * qlklIpl:
) abiliel= @Oillel - © 7 aO101:

Variations

Multiple right hand sides: augment Q, solve all egns at once

3 1 -2| 5 I 87
2 4 3| 35 75 -1
1 -3 Ol -5 38 92

Matrix inversion (rarely done in practice)

3 1-2|/1 0 O # # #|0 0@ @

2 4 3|0 1 O|— |0 # #| @ 0 @

1 -3 0/0 0 1 O 0 #/ @ @ @

. A | | Al
Q Ae? =]

2 =Al

Invert

public static double[J[] invert(double[][] a) {
int n = a.length; // Number of unknowns
double[d[g = new double[n][n+n];

for (int 1 = 0; i < n; i++)
for (int j = 0; J < n; j++) // Form q matrix
qlil01= alillil:

// Form identity matrix in right half of q
for (int 1 = 0; i < n; i++)
q[i][n+i]= 1.0;

forward_solve(q); // Do Gaussian elimination
back_solve(q); // Perform back substitution

double[J[0 x= new double[n][n]; // Extract R half of q
for (int 1 = 0; i < n; i++) // which contains inverse
for (int j= 0; j < n; j++)
x[11001= ali10§+n];
return Xx;
3
// Method multiply() in download
// Example use in GaussTest in download

LU decomposition

* We can write matrix A as the product of two matrices
L and U:

IOO 0 O O u00 uOl uOZ u03 a'OO aOl aOZ a03
IlO Ill O O . 0 ull ulZ u13 — a'.I.O a’.l.l a12 a13
I20 |21 |22 O 0 0 u22 u23 a‘20 a'21 a22 a23
I3O I3l |32 |33 0 0 0 u33 a30 a31 a32 a33
* We can solve A-x=(L-U)-x=L-U-x)=b
| | AN
by first solving for a vector y L-y=b
and then solving U-x=y

Why? Solving each is trivial: forward, back substitution

Why and How

This is perhaps twice as fast as Gaussian
elimination (count steps)

L and U do not depend on b, so we can solve as
many right hand sides as we wish

How: Crout’'s method

— We can decompose matrix A into matrices L and U by
arranging the equations in a given order

— The rearrangement is subtle; we don’t cover it in class
since you’ll never need to implement or modify it

Java implementation is on the Web site, based on

Press et al, Numerical Recipes

Class LU

Constructor: LU(double[][] a)

— Stores LU decomposition in a single matrix
e Alll; =1.0in matrix L
* We store all u elements and all non-diagonal | elements in LU

Methods:

— public double[] solve(double[] b)

— public double[][] solve(double[][] b)

— public double[][] inverseQ

— public double determinant()

— public double[] improve(double[] b, double[] x)
See download for code and LUTest class for
examples of usage

— You can use it as a ‘black box’

— Use this in preference to class Gauss

* Banded matrices
e Sparse matrices

Other linear system algorithms

» Singular value decompositions (SVD)

— Should be used in least squares computations
» Cholesky decomposition (A=L L")

— Square, symmetric, positive definite matrices

— Used in econometrics

* And others...
— Almost all are based on pivot operations

Linear system model: Rail performance

« Compute running time, including delays, for trains
on a single track railroad
— Traffic in both directions: east and west
— Three types of train (6 classes of train, including direction)

Way Freight

Siding 1

Through Freight

Siding 2

Siding 3

Figure by MIT OpenCourseWare.

Class Description Velocity
0 WB way freight -25
1 WB thru freight -50
2 WB passenger -80
3 EB passenger 80
4 EB thru freight 50
5 EB way freight 25

From E.R. Petersen

Rail performance, p.2

* Priorities used to model meets and overtakes

— Meets occur when trains travel in opposite directions and
one must take siding and wait until other passes

— Overtakes occur when trains traveling in same direction
interact, and slower one takes siding to let faster one go by

— Assume all sidings are long enough

* We want to model the running time for each class of
train over a segment of railroad, as a function of:

Number of trains of each class (type, direction)

Speed of trains

Number of sidings

Priorities, and other, less important variables

e Our linear model will give nonlinear performance behavior!

Delay matrix D

» Matrix D gives average delay for each interaction
(meet or overtake) between two classes of train
— We will then multiply this by the expected number of
interactions, to get total delay

 Delay matrix D has coefficients Dj;:
60p; d d

2(b+1) v, v,

]

Dij = pijSi +

- Dy= Expected delay to train i due to train j, in minutes

— S;=Time to take siding for train i, in minutes (5 minutes)

- Py Relative number of times train i waits for train j (0 <= pjj <= 1)
— b=Number of sidings (19)

— D= Distance of railroad segment being modeled, in miles (400 mi)
— v;= Free running velocity for train i, in miles per hour

Delay matrix D

DISTANCE

Yard 2

Siding 2

Siding 1

Yard 1

-

j<0,i>0
(a)

0<j<i

(c)

TIME

Figure by MIT OpenCourseWare.

Prob(delay) VB way

WB way
WB thru
WB pass
EB pass
EB thru
EB way

Delay
WB way
WB thru
WB pass
EB pass
EB thru
EB way

0
0.3
0.1

0
0.3
0.5

WB way
0
2.6
0.7
0
4.7
14.5

WB thru

0.7

0
0.3
0.3
0.5
0.7

WB thru

9.4
0
1.9
33
8.5
211

WB pass

0.9
0.7
0
0.5
0.7
1

WB pass

17.9
5.7
0
6.3
13.1
36.5

EB pass
1
0.7
0.5
0
0.7
0.9

EB pass
36.5
13.1
6.3

5.7
17.9

Probability, delay matrices

EB thru EB way
0.7 0.5
0.5 0.3
0.3 0
0.3 0.1
0 0.3
0.7 0
EB thru EB way
21.1 14.5
8.5 4.7
3.3 0
1.9 0.7
0 2.6
9.4 0

10

Derivation of linear system

Let

W;= average time for train of class i, including delays

— T;=free running time for train of class I (input)

— Dj=delays due to meets and overtakes to train of class |
due to trains of class |

— M;=number of meets and overtakes between train of class
| and trains of class |

Average time for train to travel across segment:
W, =T, +Z(Dij -M;)
i

Interactions between train i and trains of class j:
M, =N, (W, +W,)/1440

- M;=number of trains/day in class j times fraction of day
that train of class i can interact with trains of class j

e If EB train takes 12 hours (720 minutes) to cover line, as does WB, it
will meet every WB train that operates that day

« If EB train took only 6 hours, it would have half the interactions

Derivation of linear system, p.2
W, =T, +> (D; -M;) M = N; (W, +W,)/1440
The rest is algebra, to write the two equations
above in the form AW=T, with W the unknown (*x”
D -N;
Wi:Ti+; Lazo Wi+ W)
Collect Wi terms on left side of equation :

D.-N.
Wi —ZW(\NJ +Wi) :Ti @‘@ 8gp| Wo t0

i

iagonal; the Wj coefficients
are the off - diagonal elements in matrix A

There is a +/- sign convention handled by a matrix C (multiplies Dy):
— c[i][j]= -1 if j<i<=2 or (3 <=i<j), 0 otherwise (with 6 train classes)

11

Data members, constructor

public class RailDelay {

private int n; // Number of train classes
private int d; // Distance in miles
private Int b; // Number oT sidings

private double[][] p:; 7/ Probability of delay in interaction
private double[] s; // Time to take siding, by train class
private double[] v; // Velocity by train class

private double[][] c; // Matrix that indicates if interaction
// is pass or meet, by train classes involved

private int[] nTrain; // Number of trains by class, per day

public RailDelay(String filename) {
// Constructor reads inputs from file, sets data members

}

getDelay()

public double[] getDelay() {

double[[0 dm= new double[n][n]; // Delay matrix D
for (int i= 0; i < n; i+

for (int J=0; j < n; j++) {

dmCi]101= pLil0i1*s[i] + 60.0*pLi1Li1*pLi103] >
Math.abs(d/v[i]- d/v[j1)/(2-0*(b+1)); }

double[] t= new double[n]; // Free running time T
for (int i= 0; i < n; i+

t[i]= d*60.0/v[i];
double[][] a= new double[n][n]; // Total delay matrix A
for (int i= 0; i < n; i++) {

double delay= 0.0;

for (int J=0; j < n; j++) {

ifG=73{
alillil= dm[i101*nTrain[j1*c[i1[j]1/1440;
delay += a[il[il;

3

a[il[il= 1.0 - delay; }
double[] w= Gauss.gaussian(a, t);
return w;

main(), sample output

public static void main(String[] args) {

}

RailDelay r= new RailDelay("'src/linear/rail . txt");
double[] w= r.getDelay(Q); // Gets output w
int n= w.length;
System.out.printIn(i Act time Free time');
for (int i= 0; i < n; i++)

System_out._printf("%d %8.1f %8.1Ff \n",1i,

Math.abs(w[i]1), Math.abs(r.getFreeTime(i)));

System.out.printinQ;

// Sample output: 3 wayfreight, 4 thru freight, 2 passenger

i Act time Free time

0 1265.2 960.0
1 544.9 480.0
2 315.8 300.0
3 315.8 300.0
4 544.9 480.0
5 1265.2 960.0

Rail performance estimate

Expected Transit Time

3000 —T——T—T——T—

2500 [— —

$
=
£ 2000
g ~ S]
&
N <&
g o
= &‘b
3 1500 - —
g
3
X
g 1000 [~ . o —
= o
g ¥
LA
Y‘asse}\v

500 [— —

Number of fast freights per day

Figure by MIT OpenCourseWare.

13

Summary

Linear models are areasonable starting point in many
cases to understand complex systems

— Writing down equations to model a system analytically or through
solving linear or nonlinear systems is often a viable option

— Linear models can produce nonlinear behavior

— In the rail example, this is more intuitive (for some of us) and more
robust than simulation

| used essentially the rail analysis in a Vermont Act 250
expert witness case
— Traffic impacts on a neighborhood from a large development
— Narrow road with parking on both sides
— Number of “meets” between cars would increase very sharply
— Project application was denied
We’'ll use linear systems as a “subproblem” in next lecture

14

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

