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1.204 Lecture 20 

Linear systems:

Gaussian elimination
Gaussian elimination


LU decomposition


Systems of Linear Equations
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Algorithm to Solve Linear System


=aijCreate matrix 
x0 
x1 
x22 

= 
b0 
b1 
b22 

A x b 

0 
0 0 

=a’ij x0 
x1 
x2 

= Forward solve 
b’0 
b’1 
b’2 

A’A’ xx b’b’ 

0 
0 0 

x0
Back solve 

x0 
x1 
x2 

= 
b’0 
b’1 
b’2 

x1 
x2 

A’ x b’ 

Gaussian Elimination: Forward Solve


3 1 -2 5 
Q= 2 4 3 35Q 

1 -3 0 -5 
A b 

Form Q for convenience 
Do elementary row ops: 

Multiply rows Multiply rows 
Add/subtract rows 

Make column 0 have zeros below diagonal 

Pivot= 1/3 
Pivot= 2/3 3 1  -2 

0 10/3 13/3 
00  -10/310/3 2/32/3 

5

95/3
 Row 1’= row 1 - (2/3) row 0 
20/3 Row 2’= row  2  (1/3) row 0 Row 2 = row 2 - (1/3) row 0-20/3 

Make column 1 have zeros below diagonal 
3 1 -2 5 

Pivot= -1 0 10/3 13/3 95/3 
Row 2’’= row 2’ + 1 * row 1 0 0 15/3 75/3 
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Gaussian Elimination: Back Solve


3 1 -2 5 
0 10/3 13/3 95/30 10/3 13/3 95/3 

(15/3)x2=(75/3) x2 = 50 0 15/3 75/3 

3 1 -2 5 
0 10/3 13/3 95/3
0 0 15/3 75/3 

(10/3)x1 + (13/3)*5= (95/3) x1 = 3 

0 10/3 13/3 95/3
0 0 15/3 75/3 

3x0 + 1*3 - 2*5 = 5      x0 = 43 1 -2 5 

A Complication


0 1  -2 5 
22 44 33 35  35 Row 1’= row 1 - (2/0) row 0( /  ) o  
1 -3 0 -5 

Exchange rows: put largest pivot element in row: 

2 4 3 35 
00 11 -22 55 
1 -3 0 -5 

Do this as we process each column. 

If there is no nonzero element in a column, 
matrix is not full rank. 
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Gaussian Elimination 

public class Gauss { 
public static double[] gaussian(double[][] a, double[] b) { 
int n = a length; int n = a.length; // Number of unknowns // Number of unknowns

double[][] q = new double[n][n + 1];


for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) // Form q matrix


q[i][j]= a[i][j];

q[i][n]= b[i]; 

} 
forward_solve(q); // Do Gaussian elimination 
back_solve(q); // Perform back substitution 

double[] x= new double[n]; // Extract column n of q,

for (int i = 0; i < n; i++) // which contains the solution x

x[i]= q[i][n];

return x;


} 

Forward Solve 
private static void forward_solve(double[][] q) { 

int n = q.length; 
int m= q[0].length; 

for (int i = 0; i < n; i++) {   // Find row w/max element in this 
int maxRow = i; // column, at or below diagonal 
for (int k = i + 1; k < n; k++) 
if (Math.abs(q[k][i]) > Math.abs(q[maxRow][i]))


maxRow = k;


if (maxRow != i) // If row not current row, swap 
for (int j = i; j < m; j++) {


double t = q[i][j]; 

q[i][j]= q[maxRow][j];

q[maxRow][j]= t;
q[maxRow][j]= t;


}


for (int j = i + 1; j < n; j++) {    // Calculate pivot ratio 
double pivot = q[j][i] / q[i][i]; 
for (int k = i; k < m; k++) // Pivot operation itself 

q[j][k] -= q[i][k] * pivot; 
} 

} 
} 
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Back Substitution 

private static void back_solve(double[][] q) { 
int n = q length; int n = q.length;

int m= q[0].length;

for (int p= n; p < m; p++) { // Loop over p columns

for (int j = n - 1; j >= 0; j--) { // Start at last row 
double t = 0.0; // t- temporary 
for (int k = j + 1; k < n; k++) 

t += q[j][k] * q[k][p]; 
q[j][p]= (q[j][p] - t) / q[j][j]; 

} 
} 

} 

Variations 

Multiple right hand sides: augment Q, solve all eqns at once 

33 11 2-2 55 77 87  87 
2 4 3 35 75 -1 
1 -3 0 -5 38 52 

Matrix inversion (rarely done in practice) 

3 13 1 -22

2 4 3 

1 -3 0 


1 0 0 
1 0 0 
0 1 0 
0 0 1 

# # # 
# # # 
0 # # 
0 0 # 

@ @ @@ @@
@ @ @
@ @ @

A I A-1 

A • ? = I Q ? = A-1 
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Invert
public static double[][] invert(double[][] a) {

int n = a.length; // Number of unknowns
double[][] q = new double[n][n+n];

for (int i = 0; i < n; i++) 
f  (i t j  0  j   j ) // F   t ifor (int j = 0; j < n; j++) // Form q matrix
q[i][j]= a[i][j];

// Form identity matrix in right half of q
for (int i = 0; i < n; i++) 
q[i][n+i]= 1.0;

forward_solve(q); // Do Gaussian elimination
back_solve(q); // Perform back substitution

double[][] x= new double[n][n]; // Extract R half of q      
for (int i = 0; i < n; i++) // which contains inverse 
for (int j= 0; j < n; j++)
x[i][j]= q[i][j+n];

return x;
}
// Method multiply() in download
// Example use in GaussTest in download

LU decomposition

• We can write matrix A as the product of two matrices 
L and U:

000l uuuu aaaa

• We can solve
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by first solving for a vector y

and then solving

Why? Solving each is trivial: forward, back substitution

byL =⋅

yxU =⋅



Why and How 

•	 This is perhaps twice as fast as GaussianThis is perhaps twice as fast as Gaussian 
elimination (count steps) 

•	 L and U do not depend on b, so we can solve as 
many right hand sides as we wish 

•	 How: Crout’s method 
–	 We can decompose matrix A into matrices L and U by 

arranging the equations in a given orderarranging the equations in a given order 
–	 The rearrangement is subtle; we don’t cover it in class 

since you’ll never need to implement or modify it 
•	 Java implementation is on the Web site, based on 

Press et al, Numerical Recipes 

Class LU 

•	 Constructor: LU(double[][] a) 
–	 Stores LU decomposition in a single matrix Stores LU decomposition in a single matrix 

•	 All lii = 1.0 in matrix L 
•	 We store all u elements and all non-diagonal l elements in LU 

•	 Methods: 
–	 public double[] solve(double[] b) 

–	 public double[][] solve(double[][] b) 

–	 public double[][] inverse() 

–	 public double determinant()public double determinant() 

– public double[] improve(double[] b, double[] x) 

•	 See download for code and LUTest class for 
examples of usage 
–	 You can use it as a ‘black box’ 
–	 Use this in preference to class Gauss 

7 



8

Other linear system algorithms

• Banded matricesBanded matrices
• Sparse matrices
• Singular value decompositions (SVD)

– Should be used in least squares computations
• Cholesky decomposition (A= L LT)

– Square, symmetric, positive definite matrices
U d i t i– Used in econometrics

• And others…
– Almost all are based on pivot operations

Linear system model: Rail performance

• Compute running time, including delays, for trains 
on a single track railroadon a single track railroad
– Traffic in both directions: east and west 
– Three types of train (6 classes of train, including direction)

Class Description Velocity
0 WB way freight ‐25
1 WB thru freight ‐50
2 WB passenger ‐80

From E.R. Petersen

p g
3 EB passenger 80
4 EB thru freight 50
5 EB way freight 25

Meet

Passenger

Overtake

Way Freight   Through Freight

Siding 1 Siding 2 Siding 3

Figure by MIT OpenCourseWare.
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Rail performance, p.2

• Priorities used to model meets and overtakes
– Meets occur when trains travel in opposite directions and 

one must take siding and wait until 
pp
other passes

– Overtakes occur when trains traveling in same direction 
interact, and slower one takes siding to let faster one go by

– Assume all sidings are long enough
• We want to model the running time for each class of 

train over a segment of railroad, as a function of:
f f ( )– Number of trains of each class (type, direction)

– Speed of trains
– Number of sidings
– Priorities, and other, less important variables

• Our linear model will give nonlinear performance behavior!

Delay matrix D

• Matrix D gives average delay for each interaction 
(meet or overtake) between two classes of train( )
– We will then multiply this by the expected number of 

interactions, to get total delay
• Delay matrix D has coefficients Dij:

ji

ij
iijij v

d
v
d

b
p

SpD −
+

+=
)1(2

60 2

– Dij= Expected delay to train i due to train j, in minutes
– Si= Time to take siding for train i, in minutes (5 minutes)
– pij= Relative number of times train i waits for train j (0 <= pij <= 1)
– b= Number of sidings (19)
– D= Distance of railroad segment being modeled, in miles (400 mi)
– vi= Free running velocity for train i, in miles per hour 
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Delay matrix D

Probability, delay matrices

Priority WB way WB thru WB pass EB pass EB thru EB way
WB way 0 0.7 0.9 1 0.7 0.5
WB thru 0.3 0 0.7 0.7 0.5 0.3

Prob(delay)

WB pass 0.1 0.3 0 0.5 0.3 0
EB pass 0 0.3 0.5 0 0.3 0.1
EB thru 0.3 0.5 0.7 0.7 0 0.3
EB way 0.5 0.7 1 0.9 0.7 0

Delay WB way WB thru WB pass EB pass EB thru EB way
WB way 0 9.4 17.9 36.5 21.1 14.5
WB thru 2.6 0 5.7 13.1 8.5 4.7
WB pass 0.7 1.9 0 6.3 3.3 0
EB pass 0 3.3 6.3 0 1.9 0.7
EB thru 4.7 8.5 13.1 5.7 0 2.6
EB way 14.5 21.1 36.5 17.9 9.4 0

A
A

A

Train j
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TIME0 < i < j 0 < j < i
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Figure by MIT OpenCourseWare.
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Derivation of linear system
• Let

– Wi= average time for train of class i, including delays
– Ti= free running time for train of class I (input)
– Dij= delays due to meets and overtakes to train of class IDij  delays due to meets and overtakes to train of class I 

due to trains of class j
– Mij= number of meets and overtakes between train of class 

I and trains of class j
• Average time for train to travel across segment:

• Interactions between train i and trains of class j:

)(∑ ⋅+=
j

ijijii MDTW

te act o s bet ee t a a d t a s o c ass j

– Mij= number of trains/day in class j times fraction of day 
that train of class i can interact with trains of class j

• If EB train takes 12 hours (720 minutes) to cover line, as does WB, it 
will meet every WB train that operates that day

• If EB train took only 6 hours, it would have half the interactions

1440/)( ijjij WWNM +=

Derivation of linear system, p.2

• The rest is algebra, to write the two equations 
above in the form AW= T, with W the unknown (“x”)

)(∑ ⋅+=
i

ijijii MDTW 1440/)( ijjij WWNM +=

above in the form AW  T, with W the unknown ( x )
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• There is a +/- sign convention handled by a matrix C (multiplies Dij):
– c[i][j]= -1 if j<i<=2 or (3 <=i< j), 0 otherwise (with 6 train classes)

Amatrix in  elements diagonal-off  theare
 tscoefficien  Wj thediagonal;  theist coefficien  WiThe
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i t  i t  b // N b f idi

if (i j) {

Data members, constructor 
public class RailDelay { 

private int n; // Number of train classes 

private int d; // Distance in miles 

private int b; // Number of sidings 

private double[][] p;  // Probability of delay in interaction 

private double[] s; // Time to take siding, by train class 

private double[] v; // Velocity by train class 

private double[][] c; // Matrix that indicates if interaction 

// is pass or meet, by train classes involved 

private int[] nTrain; // Number of trains by class, per day 

public RailDelay(String filename) { 

// Constructor reads inputs from file, sets data members 

} 

getDelay() 
public double[] getDelay() { 

double[][] dm= new double[n][n]; // Delay matrix D 

for (int i= 0; i < n; i++) 

for (int j= 0; j < n; j++) { 

dm[i][j]= p[i][j]*s[i] + 60.0*p[i][j]*p[i][j] * 

Math abs(d/v[i] d/v[j])/(2 0*(b+1)); } Math.abs(d/v[i]- d/v[j])/(2.0*(b+1)); } 

double[] t= new double[n]; // Free running time T 

for (int i= 0; i < n; i++) 

t[i]= d*60.0/v[i]; 

double[][] a= new double[n][n]; // Total delay matrix A 

for (int i= 0; i < n; i++) { 

double delay= 0.0;


for (int j= 0; j < n; j++) {


if (i != j) { 

a[i][j]= dm[i][j]*nTrain[j]*c[i][j]/1440; 

delay += a[i][j]; 

} } 

a[i][i]= 1.0 - delay; }


double[] w= Gauss.gaussian(a, t);


return w; 


} 
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main(), sample output 

public static void main(String[] args) { 

RailDelay r= new RailDelay("src/linear/rail.txt"); 

double[] w= r getDelay(); double[] w= r.getDelay(); // Gets output w // Gets output w 

int n= w.length; 

System.out.println("i Act time Free time"); 

for (int i= 0; i < n; i++) 

System.out.printf("%d %8.1f %8.1f \n",i, 

Math.abs(w[i]), Math.abs(r.getFreeTime(i))); 

System.out.println(); 

} 

// S // Samplle output: 33 wayffreii htght, 4 th4 thru ffreii htght, 22 passenger 

i Act time Free time 

0   1265.2    960.0 

1    544.9    480.0 

2    315.8    300.0 

3    315.8    300.0 

4    544.9    480.0 

5   1265.2    960.0 

Rail performance estimate 
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Summary 

•	 Linear models are a reasonable starting point in many 
cases tto unddersttandd compllex systtems 

–	 Writing down equations to model a system analytically or through 
solving linear or nonlinear systems is often a viable option 

–	 Linear models can produce nonlinear behavior 
–	 In the rail example, this is more intuitive (for some of us) and more 

robust than simulation 

•	 I used essentially the rail analysis in a Vermont Act 250 
expert witness case 
–	 Traffic impacts on a neighborhood from a large development 
–	 Narrow road with parking on both sides 
–	 Number of “meets” between cars would increase very sharply 
–	 Project application was denied 

•	 We’ll use linear systems as a “subproblem” in next lecture 
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