1.204 Lecture 18

Continuous constrained nonlinear
optimization:
Convex combinations 1:
Network equilibrium

Transportation network flows

» Amount of travel on any road or transit line is
result of many individuals’ decisions
— These depend on price and quality of service
— Congestion in urban areas is a significant factor

* Analyzing passenger flows on networks relies on:
— Graph data structures
— Shortest path algorithms

— Network assignment algorithms that assign travelers to
a particular set of streets or transit lines, based on travel
time, cost and other service measures

— Demand models are also used

» Based on discrete choice theory (take 1.202!)




Transportation network equilibrium

» Users make their own, ‘selfish’ decisions on the
best path through a network

— When congestion exists, traveler choices affect travel
times, which in turn affect traveler choices, which...

— Users switch routes (and modes and time of day and trip
frequency and location) in response to changes in
service quality

— We model this as a market that reaches supply-demand
equilibrium on every arc in a network
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Definition of equilibrium

« Links (including intersections) have a supply function:
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« Definition of equilibrium:
— For each origin-destination pair:
» Travel time for all used paths is equal, and is
* Less than (or equal to) the travel time on any unused path
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Network equilibrium problem formulation
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Network equilibrium problem example
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Formulation example

min z(x) = T(z +w)do +j 1+ 20)do

s.t.
X +x,=5
x20,x,20

Convert tol— D by setting x, =5—Xx;
5-x

min z(x) = T(2+ w)dw+ j(1+ 20)do

s.t.

x20,5-x20
Z(X)= 2x, + x,2/2 +

Integrate analytically : (5X;) + (5-X,)?2
_ 2
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dz(x,) 0=y, =3 X, + 25 - 10X, + X,2
dx,
Formulation

The formulation has no economic or physical significance

It happens to produce the desired first-order conditions for an
optimum

They require that the time on all routes used between an origin
and destination be equal

And the time on routes not used must be greater

We can view the objective function as a convergence criterion
for the equilibrium solution

Nonetheless, equilibrium is a key concept

And it’s a nonlinear optimization problem, techniques for
which we want to cover in this course

This is a constrained continuous nonlinear optimization
problem




Solution method: convex combinations

min z(x)

th,xz 2b, Vj

Assume current solution is x" = (x;', x5 ..., X}')

To find descent direction, we wish to find auxiliary feasible
solution y" =(y;,vy,...,¥;) so direction from x" to y gives
maximum decrease.

Direction from x" to y is unit vector (y —x") /|| y—x" ||

(v Il means v-v)

Slope of z(x") in direction of (y —x") =

=x")" x") 0z(x) az(x) ﬁz(x)
-Vz(x")- ' where Vz(x") = (6x1 o, )

X,

Solution method: convex combinations 2

Rewrite original problem as linear approximation :

min z; (y) = z(x") + Vz(x") - (y = x")"

S.t.
Z hyy; 2 b,
At x = x" value of objective function is constant : we can drop z(x")

Also Vz(x") is constant at x = x", so we can drop it, leaving :

min zj (y) = Vz(x")- y" = Z aza(; ) Vi

1

S.t.
2y zb,

This is a linear program whose solution is y.

It gives a descent direction (y" —x")




Solution method: convex combinations 3

To determine how far to go in this direction :
minz[x" + a(y" —x")]

S.t.

0<ea<l

This is a 1- D minimization problem in a,
solved with a line search using bisection
Onceo.is found, next point generated by :

P +a, (" —x")

The new solution is a weighted average,

or convex combination of x"and y"

Continue until convergence, which is slow but guaranteed

Convex combinations algorithm

Step 1: Direction finding. Find y" that solves
linear program.
L ﬁz(x")_
min ZL()’)—Z ox, Vi

st. D hy, 2b,

Step 2: Step size determination, or line search.
Find a, that solves

minz[x" + a(y" —x")]

Step 3: Move. Set

n+

X" =x"+a, (y" —x")

Step 4: Convergence test. If z(x") - z(x™1) < K, stop




Next time

« We’ll apply the convex combinations method to the network
equilibrium problem
— Formulation

— Algorithms
 Direction finding
— Shortest path algorithm solves the linear program
— Compute y flow vector (auxiliary solution)
* Line search
— Bisection solves the line search problem
— Must compute Aarivativa of objective function
* Move
— Update x flows on network as linear combination of x and y flows
— Update arc travel times; both of these steps are just algebra
» Convergence test
— Compute change in flows as simplest measure

— Java implementation
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