1.204 Lecture 17

Branch and bound:
Method
Warehouse location problem

Breadth first search

« Breadth first search manages E-nodes in the branch and
bound tree
— An E node is the node currently being explored
— In breadth first search, E-node stays live until all its children
have been generated
— The children are placed on a queue, stack or heap
« Typical strategies to select E-nodes
— Choose node with largest upper bound (in a maximization
problem), using a heap
— Choose node likely to be optimal, even if we can’t prove it’s
optimal immediately
* Use problem specific, heuristic rule
¢ It can be a previous optimal result to similar problem
— Choose ‘quick improvement’ node based on a gradient
estimate from the upper and lower bounds on a node

Branching on nodes

» Several strategies are used to decide which
branch (0 or 1) to take:
— User specified rules. Again, heuristics are used
— Set a group of 0-1 variables to given values, not just one

* This seems to perform better in many problems
e Our code in this lecture does not do this

* Other strategies to improve performance:

— If dual can be computed, it provides a lower bound

— Bound tightening, such as truncation (like we used in
the last lecture on the knapsack problem)

— Adding linear constraints (0<=x<=1) in subproblems in
hopes that integer answers are obtained

— Greedy heuristics, including dual descent and others...

Facility location problem

g I

N~
{!f'

l'w?’ 4

Customer 1%

w K
Customer 0 /
. |'Wars}%house 2
Warehouse 3 o\ \.':f
"‘{%v k' mo___m e.g., Amazon
A"y e) Intel

Tropicana

Facility location example

Warehouse Fixed cost Cost to ship to customer
k flkk 0 1 2 3 4

4 3 10 8 18 14
9 4 6 5 5
8

9

12 6 10 4
8 6 5 12

WIN|F|O
[ec] {er) [o)]

Set of 4 possible warehouses (0-3) to serve 5 possible
customers (0-4)

Table gives annual capital (fixed) cost of warehouse if it is
built, and the annual cost of shipping to each customer via
that warehouse

Decision is whether to build (x;= 1) or not build (x;=0) each
warehouse

Objective is to minimize fixed plus shipping costs

Computing bounds

Lower (optimistic) bound at each node is sum of:
— Minimum transport cost over all built or unknown warehouses
— Fixed cost of built warehouses
Upper (pessimistic) bound at each node is sum of
— Minimum transport cost over all built warehouses
— Fixed cost of built warehouses
Pruning rules

— If minimum (pessimistic) savings from building a warehouse
are greater than its fixed cost, we build it

— If maximum (optimistic) savings from building a warehouse
are less than its fixed cost, we don’t build it

All combinations are feasible in this problem, so there is no
reduction in the size of the tree from feasibility constraints
— We can introduce capital budget constraints in some cases

Pruning rules from Akinc, Khumwala

Computational strategy

» Start at root node
— Apply upper and lower bound at root
— Try to lock in or lock out some warehouses

* Then create tree node with arbitrary warehouse
locked in or out
— Apply upper and lower bound at this node
— Try to lock in or lock out additional warehouses
— Generate children if bounds don’t prune them
¢ Use stack, queue or heap to hold children
» Continue until all E-nodes have been explored
— Output optimal solution

— Difference between lower and upper bound decreases
as algorithm continues

* We can stop when the difference is small enough, even
without an exact optimal solution

Computational example: root node

* Root node
All warehouses x; are unknown
Upper bound at root is “infinity”, by convention
Lower bound at root is sum of:
« Cost of built warehouses (none) plus

¢ Minimum transport cost over all built or unknown
warehouses, which is all of them. Lower bound= 21

Use convention:
* x=1 is built warehouse
- x= 0 is unknown warehouse
« x=-1is warehouse not built
Thus, root node solution is {0, 0, 0, 0}

Pruning rules at root

* Minimum savings at all warehouses (if warehouse
is cheapest, compare it with next cheapest):

Warehouse Fixed cost Cost to ship to customerj Minimum Pruning

k f[k] 0 1 2 3 4 savings decision

0 4 3 10 8 18 14 5 x0=1
1 6 9 4 6 5 5 5 None
2 6 12 6 10 4 8 1 None
3 8 8 6 5 12 9 1 None

* Maximum savings at all warehouses (compare it
with most expensive):

Warehouse Fixed cost Cost to ship to customer j Maximum Pruning

k flk] O 1 2 3 4 savings decision

0 4 3 10 8 18 14 11 None
1 6 9 4 6 5 5 35 None
2 6 12 6 10 4 8 24 None
3 8 8 6 5 12 9 24 None

* Thus we are able to prune the x, branch of the tree

Orange is cheapest warehouse to serve customer; gray is next cheapest

Tree from root

x= {0,0,0,0}
Upper bound= «
Lower bound= 21+0=21

x= {1,0,0,0} Pruned

Upper bound= 53+4=57
Lower bound= 21+4=25

Xo=1

77X

Generate E-node

Generate E-node to left of root:
— Warehouse 0 is built (x,= 1 in root solution)
Compute upper and lower bounds at E-node
— All customers served from warehouse 0
— Upper bound= 4 (fixed cost) + 53 (transport cost)= 57
« Assume all customers served from warehouse 0

— Lower bound= 4 (fixed cost) + 21 (transport cost) = 25

- Assume customers served from built and unknown
warehouses

No further pruning is possible at this node
Arbitrarily branch on warehouse 1. Set x,= 1

E node bounds

x= {0,0,0,0}
Upper bound= =
Lower bound= 21+0= 21

x= {1,0,0,0} Pruned

Upper bound= 53+4=57
Lower bound= 21+4=25

X4=1

Xo=1

x={1,1,0,0}

Upper bound= 23+10=33 X -1
Lower bound= 21+10=31

Pruning rules at E-node

* Minimum savings at all warehouses:

Warehouse Fixed cost Cost to ship to customer j Minimum Pruning
k f[k] 0 1 2 3 4 savings decision
0 4 3 10 8 18 14 NA NA
1 6 9 4 6 5 5 NA NA
2 6 12 6 10 4 8 1 None
3 8 8 6 5 12 9 1 None

« Maximum savings at all warehouses:

Warehouse Fixed cost Cost to ship to customer j Maximum Pruning
k flk] 0 1 2 3 4 savings decision
0 4 3 10 8 18 14 NA NA
1 6 9 4 6 5 5 NA NA
2 6 12 6 10 4 8 1 x2=-1
3 8 8 6 5 12 9 1 x3=-1
* Thus we are able to prune the x, and x; branches
of the tree

Yellow is cheapest warehouse to serve customer; gray is next cheapest

E node bounds

x= {0,0,0,0}
Upper bound= «
Lower bound= 21+0= 21

x= {1,0,0,0} Pruned
Upper bound= 53+4=57

Lower bound= 21+4=25

Xo=1

x={1,1,0,0}
Upper bound= 23+10=33
Lower bound= 21+10=31

Pruned }’(

X= {1 !1 1'1 1-1}
Upper bound= 23+10=33
Current best solution= 33

X3=-1

Leéf node

We now have just one E-node left to explore

Pruning rules at E-node

* Minimum savings at all warehouses:

Warehous¢Fixed cost Cost to ship to customer j Minimum Pruning
k flk] 0 1 2 3 4 savings decision
0 4 3 10 8 18 14 NA NA
2 6 12 6 10 4 8 8 x2=1
3 8 8 6 5) 12 9 3 None

» This locks in warehouse 2
— We don’t do the maximum savings calculation
— We next compute the bounds at the new node (x,= 1)

E node bounds

x= {0,0,0,0}
Upper bound= «
Lower bound= 21+0= 21

x= {1,0,0,0} Pruned

Upper bound= 53+4=57
Lower bound= 21+4=25

Xo=1

x={1,1,0,0}
Upper bound= 23+10=33
Lower bound= 21+10=31

Pruned }’(
Upper bound= 29+10=39

_ Lower bound= 26+10=36
x= {1,1,-1,-1}
Upper bound= 23+10=33 Bounded:
Current best soln= 33 lower bound > best solution

x={1,-1,1,0}

Termination

We are done:
— There are no more live nodes
— All have either been pruned
* Maximum savings < fixed cost or
* Minimum savings > fixed cost
— Or bounded
* Lower bound > best solution so far
Optimal solution is the best solution found:
- {1,1,1, -1}
— Cost=33
We examined 7 nodes in tree out of 31

— Inlarger problems, we can only examine a small fraction of
total nodes, since there are 2" nodes for n 0-1 variables

Algorithm pseudocode

public boolean branchAndBound() {

upperBound= infinity;
eNode= root;
initialize queue empty; // Holds children of eNode
bound(root);
if (root is leaf) { upperBound= cost(root); answer= {root};};
do {
generate left and right child at first xi=0 of eNode;
bound(left child); // May also generate/prune nodes
bound(right child); // May also generate/prune nodes
for each child w of eNode {
if (lowerBound(w) < upperBound) {
if (w is a leaf) { upperBound= lowerBound(w); answer= {w} };
else {
add w to queue;
if (upperBound(w) + TOLERANCE < upperBound)
upperBound= upperBound(w) + TOLERANCE;

3
do {
if (queue empty) return;
delete eNode from front of queue;
} while (lowerBound(eNode) >= upperBound);

} while (number of children < maximum number of children);

Algorithm operation

We can change algorithm from classical breadth first
search (BFS) to D-search or LC-search by substituting a
stack or heap for the queue
— LC search can use lower bound, upper bound or other criteria
as priority to explore child
We don’t store parent of node
— We store answer array, from which we generate children
— BFS, D-search and LC-search never backtrack, so parent is not
needed
— If you want to backtrack, then store parent
— Our bound() methods can generate several children during
their calculations
* This makes it more convenient for us to store the answer array
One special case is not handled in our code:

— If all costs from warehouses to customers are equal, maximum
savings from any warehouse will be zero and all warehouses
will be closed at root node

« If this occurs, we know only one warehouse needs to be open
* Pick the cheapest.

Branch and bound example

L 5 Pohuetial Geselidabies Gl

< Pradasing Puas

o - e

10

Branch and bound example

Shipping sugar harvest from Brazil for export

Warehouse customers: nodes 0 through 49
— Ship product to warehouse
— Each customer has a quantity produced and shipped
— Each arc in highway network has a cost
Warehouses: nodes 50 through 57
— Warehouses are on rail lines, ship to port by rail
— Each warehouse has fixed cost, if built
— No capacity constraint
Which warehouses do we build to minimize cost?
— What customers ship to each warehouse?

— What are flows, costs for each customer and
warehouse?

LC-search branch and bound

LCBB.java (least-cost search) imports
import src.dataStructures.Heap; // LC-search
import src.greedy.Graph; // Used by all BB codes
— Use nested class BBNode to allow LC-search to use lower bound,
upper bound or answer array to select next node to search
DBB.java (D-search) and BFSBB (breadth-first search) import
import src.dataStructures.Stack; // For D-search only
import src.dataStructures.Queue; // For BFS search only
import src.greedy.Graph; // Used by all BB codes
— Stack and queue implementations use BBNode as well, to
demonstrate interchangeability of code
BBArray.java uses BFS and ‘raw’ arrays rather than a BBNode
(branch and bound) nested class like the first three
— There are extensive comments in the BBArray.java file
— All classes use java.io.* and java.util.*

11

http:java.io.*

Code outline

Graph class: constructor, shortHKQ
LCBB class:
LCBB data members: input, calculation, output
BBNode inner class: data members, constructor, compareTo()
LCBB() constructor
bbNetwork(): read warehouse.txt input data
branchAndBound():
setC(): call g.-shortHK() on all warehouses, create costs
initializeBB(): cost initialization, create root of BB tree
bb(): branch-and-bound algorithm
bound(): compute min, max savings, lower/upper bounds
warehouseBound(): compute min, max savings at 1 warehouse
bbAssign(): postprocess output, assign customer to warehouse
bbOutput(): prints out solution, costs, Fflows
mainQ:
create Graph object g
create LCBB object w
call w_branchAndBound()

LCBB data members

public class LCBB {
// Input data
private int nw; // Number of potential warehouses
private int nc; // Number of customers
private int[] f; // Fixed cost of each potential warehouse
private int[1[] c; // Cost from customer to warehouse
private int[] railcost; /7 Cost by rail, warehouse to port
private int[] prod; // Production volume from each customer
private final static int EPS= 1; // Epsilon, tolerance
private final static int MAXBBNODES= 10000;

// Data used by branch and bound calculations

private int[] savMax; // Calculated by warehouseBound()
private int[] savMin; // Calculated by warehouseBound()
private BBNode[] nodes; // Branch and bound nodes

private Heap h; // Keeps nodes to be visited still

// Stack or Queue in other versions
// Solution
private int[] ans; // Solution: 1 if in,-1 if not,0 unknown
private int upperBound; // Global upper bound
private boolean optimumFound;
int[] whAssign; // Warehouse assgd to customer
int[] flow; // Flow through each warehouse

12

BBNode nested class

private class BBNode implements Comparable {
private int[] x; // Solution
private int upBound; // Upper bound (cost) estimate
private int lowBound; // Lower bound (cost) estimate

public BBNode({
x= new int[nw];
3

// Place node with lowest lower bound at top of heap
public int compareTo(Object other) {
BBNode o= (BBNode) other;
if (JlowBound < o.lowBound)
return 1;
else if (lowBound > o.lowBound)
return -1;
else
return O;

}

3} // Can create general rule for which node is at top

LCBB constructor

public LCBB(String filename) {
// Input data
bbNetwork(Filename) ;
= new int[nw+l][nc]; // Cost matrix, cust-whse
// Last row holds max cost
// Data used by branch and bound calculations
savMax= new int[nw];
savMin= new int[nw];
nodes= new BBNode[MAXBBNODES];
/7 Allocate all BBNode memory first
for (int i= 0; i < MAXBBNODES; i++)
nodes[i]= new BBNode();
h= new Heap(Q); // Or Stack or Queue

/7 Solution

ans= new int[nw];

upperBound= Integer .MAX_VALUE;
whAssign= new int[nc];

Flow= new int[nw];

13

bbNetwork: read warehouse input file

public void bbNetwork(String Filename) {
try {

FileReader fin= new FileReader(filename);

BufferedReader in= new BufferedReader(fin);

nc= Integer.parselnt(in.readLine(Q));

nw= Integer.parselnt(in.readLine(Q));

= new int[nw];

railcost= new int[nw];

prod= new int[nc+nw];

for (int i=0; i < nw; i++) {
String str = in.readLine(Q);
StringTokenizer t = new StringTokenizer(str, ",');
int wNumber= (Integer.parselnt(t.nextToken()));
railcost[i]= (Integer.parselnt(t.nextToken()));
T[i1= (Integer.parselnt(t.nextToken()));

}

for (int 1= 0; 1 < nc; i++) {
String str = in.readLine(Q);
StringTokenizer t = new StringTokenizer(str, ",');
int cNumber= (Integer.parselnt(t.nextToken()));
prod[i]= (Integer.parselnt(t.nextToken()));

-

n.close(Q); .. // Catch exception, and end method

setC()

public void setC(Graph g) {
int[][0 DW= new int[nw+1][nc+nw];
int[1[0 PW= new int[nw+1][nc+nw];
int nodes= g.getNodes();

for (int root= nc; root < (nc + nw); root++) {
g-shortHK(root);
int[] D= g.getDQ;
int[] P= g.getPQ:
for (int i= 0; i < nodes; i++) {
DW[root-nc][i]= D[i]:;
PW[root-nc][i]= P[i]:
3
}
for (int k= 0; k < nw; k++)
for (int j= 0; j < nc; j++)
c[kl1)]1= (OWLk]1[)] + railcost[k])* prod[j]:

14

initializeBB()

public void initializeBBQ {
for (int m= 0; m < nc; m++) { // Write highest cost
int temp= 0;
for (int j= 0; J < nw; j++)
it (ci1[m] > temp)
temp= c[j1[m];
c[nw][m]= temp;
3
// bound returns true if leaf
if (bound(0)) { // Find upper, lower bounds
upperBound= nodes[0] - lowBound;
for (int k= 0; k < nw ; k++)
ans[k]= nodes[0] -x[k];
3
// 1T all warehouses closed at root, select cheapest
// one. This special case not handled.

}
public boolean bb(Q) { bt)()

BBNode eNode= nodes[0]; // Root, node O, is the first e-node

int i= 0; // Root is Oth node in tree

int inOut= 1; // Toggles between -1 and +1

do { /7 Infinite loop until queue empty
int w= -1;
do { wt+; // Find first warehouse with unknown status
} while (1 (eNode.x[w] == 0 || w >= nw));
if (w<nw { // 1T unknown warehouse found, gen children

for (int z=0; z <=1; z++) {

i++; // Generate child
for (int j= 0; Jj < nw; j++)
nodes[i]-x[j]= eNode.x[jJ]:; 7/ Copy parent”s solution
nodes[i].x[w]= -inOut; // Set unknown whse state
boolean leaf= bound(i); // Bound this child (t if leaf)
iT (nodes[i]-lowBound < upperBound) { 7/ If worth going
if (leaf) { // 1T child is leaf, we have new optimum
upperBound= nodes[i1].lowBound; // Update upper bound
for (int k= 0; k < nw; k++)

ans[k]= nodes[i]-x[k]: // Update solution
} else { // Child is not leaf
h.insert(nodes[i]); // Add to heap

iT (nodes[i]-upBound + EPS < upperBound)
upperBound= nodes[i1]-upBound + EPS; // Update upper
11 // Continues on next slide

15

bb(), p.2

do { // Find new e-node
if (h.isEmptyQ) // If heap empty, we"re done
return true; // Found optimum

eNode= (BBNode) h.delete(); // Get e-node from heap
3} while (eNode.lowBound >= upperBound);
} while (i < MAXBBNODES-2);
return false; // Generated maximum nodes w/o finding optimum

}

bound()

private boolean bound(int i) { // Returns true if leaf node
boolean change;
do { // Lock in/out warehouses based on max/min savings
change= false;
for (int k= 0; k < nw; k++)
if (nodes[i].x[k] == 0)
warehouseBound(i, k); 7/ Find min, max savings for k
for (int k= 0; k < nw; k++) {
if (nodes[i1].x[k] == 0) {
if (savMin[k] - f[K] >=0) {
change= true;
nodes[i]-x[k]= 1; /7 Lock in warehouse
for (int j= 0; j < nc; j++)
if (cIk1O1 < cwliD
c[nwllil = cIK1Lil:
}
if (savMax[k] - f[K] <= 0) {
change= true;
nodes[i]-x[k]= -1; // Lock out warehouse

} 3} } } while (change);

16

bound(), p-2

// Compute lower and upper bound. Start by adding up
// transportation costs over all customers to non-closed
// warehouses (lower bound) and to open warehouses (upper)
int lowc= 0, minc= 0, uppc= 0, maxc= 0;
for (int j=0; J < nc; j++) {
minc= Integer MAX_VALUE;
maxc= c[nw]l[jl;
for (int k= 0; k < nw; k++)
if ((nodes[i]-x[k] !'= -1) && (cIk1[}1 < minc))
minc= c[k]l[§l; // Find min transportation cost
if (minc == Integer.MAX_VALUE)
minc= 0;
lowc += minc;
uppc += maxc;

bound(), p.3

// Add fixed costs of open warehouses to lower and upper
// bounds, fixed cost of unknown warehouses to upper bound
boolean leaf= true;
for (int k= 0; k < nw; k++) {
if (nodes[i1].x[k] == 1) {
lowc += F[K]:
uppc += f[k];
}
if (nodes[i].x[k] == 0) {
leaf= false;
uppc += f[K];
}
3
nodes[i]-lowBound = lowc;
nodes[i]-upBound = uppc;
return leaf;

17

warehouseBound()

private void warehouseBound(int i, int wh) {
// Find minimum and maximum savings for a warehouse
// i= current node, wh= warehouse being examined
int minSav= 0;
int maxSav= 0;
for (int h= 0; h < nc; h++) { // Loop thru each customer
minSav= Integer.MAX_VALUE;
it (c[wh][h] < c[mw][hD)
maxSav= c[nw][h] - c[whl[h];
else
maxSav= 0;
for (int g= 0; g <nw ; g++) // Loop thru each warehouse
if ((@ '= wh) && (nodes[i]-x[g] != -1) &&
((clgl[h] - c[wh][h]I) < minSav))
minSav= c[g]l[h]l - c[whl[h];
if (minSav == Integer.MAX_VALUE |] minSav < 0)
minSav= 0;
savMin[wh] += minSav;
savMax[wh] += maxSav;

bbAssign()

// Output method, after solution is computed
public void bbAssign(Q {
for (int k= 0; k < nc; k++) {
int temp= Integer.MAX_VALUE;
for (int j= 0; j < nw; j++) {
if (c[J1IK] < temp && ans[jl== 1) {
temp= c[i1[KI1:
whAssign[K]= j:

}

}

for (int k=0; k < nc; k++)
Flow[whAssign[k]] += prod[K];

18

bbOutput()

public void bbOutput() { // More output
System._out.printIn("’Optimum found? "+ optimumFound);
if (foptimumFound) { // This code only lightly tested

System.out.printIn("'Upper bound: " + upperBound);
// Go through all E nodes in heap to find lowest lower bound
int lowerBound= Integer.MAX_ VALUE;
while (Yh.isEmpty(Q) {
BBNode n= (BBNode) h.delete(Q);
if (n-lowBound < lowerBound)
lowerBound= n.lowBound;

}

System.out.printIn("’Lower bound: " + lowerBound);

}

// If no leaf node visited yet, answer array will be all zeros.
// Can insert code here to set ans array= x array of node with
// best lower bound. Not done.

// Continues on next slide

bbOutput(), p.2

int constr= 0;
System.out.printIn(""\nCenter \tConstruct? \tFixed Cost'");
for (int J=0; J < nw; j++) {
System_out.printIn(G+"\t\t"+ ans[j]+ "\t\t"+ f[j1;
if (ans[j] == 1)
constr += f[j];
3
int trans= upperBound - constr;
System.out.printIn(""\nTransport cost: "+ trans +
" fixed cost: "+ constr);
System.out.printIn(""\nFlow through consolidation centers');
System._out.printIn("’"Center\tTons');
for (int J=0; j < nw ; j++)
System.out.printIn(G + "\t"+ flow[j]):
for (int j= 0; J < nw; j++)
if (ans[j] == 1) {
System.out.printIn("’"\nAreas that ship to center "+ j);
for (int k= 0; k < nc; k++)
if (whAssign[k] == j)
System.out.print("” " + k);

19

branchAndBound(), main()

public void branchAndBound(Graph g) {
setC(9);
initializeBB();
optimumFound= bbQ);
bbAssign():
bbOutput();
}

public static void main(String[] args) {
Graph g= new Graph(*'src/bb/graph.txt'™);
LCBB w= new LCBB(‘'src/bb/warehouse.txt');
w.branchAndBound(Q) ;

20

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

