
1.204 Lecture 17

Branch and bound:

Method
Method

Warehouse location problem

Breadth first search

•	 Breadth first search managges E-nodes in the branch and
bound tree
–	 An E node is the node currently being explored
–	 In breadth first search, E-node stays live until all its children

have been generated
–	 The children are placed on a queue, stack or heap

•	 Typical strategies to select E-nodes
–	 Choose node with largest upper bound (in a maximization

problem),), using a heappp g
–	 Choose node likely to be optimal, even if we can’t prove it’s

optimal immediately
•	 Use problem specific, heuristic rule
•	 It can be a previous optimal result to similar problem

– Choose ‘quick improvement’ node based on a gradient
estimate from the upper and lower bounds on a node

1

Several are used to decide which

–

Branching on nodes

• Several strategies are used to decide whichstrategies
branch (0 or 1) to take:
–	 User specified rules. Again, heuristics are used
–	 Set a group of 0-1 variables to given values, not just one

•	 This seems to perform better in many problems
•	 Our code in this lecture does not do this

•	 Other strategies to improve performance:
– If dual can be computed If dual can be computed, it provides a lower boundit provides a lower bound
–	 Bound tightening, such as truncation (like we used in

the last lecture on the knapsack problem)
–	 Adding linear constraints (0<=x<=1) in subproblems in

hopes that integer answers are obtained
–	 Greedy heuristics, including dual descent and others…

Facility location problem

Warehouse 1
Customer 4

Customer 1

Customer 3

Customer 2

8

1814

10

Warehouse 0

Warehouse 2

Warehouse 3

Customer 0
3

e.g., Amazon
Intel
Tropicana

2

3

Facility location example
Warehouse Fixed cost

k f[k] 0 1 2 3 4
Cost to ship to customer j

• Set of 4 possible warehouses (0-3) to serve 5 possible
customers (0-4)

[]
0 4 3 10 8 18 14
1 6 9 4 6 5 5
2 6 12 6 10 4 8
3 8 8 6 5 12 9

()
• Table gives annual capital (fixed) cost of warehouse if it is

built, and the annual cost of shipping to each customer via
that warehouse

• Decision is whether to build (xi= 1) or not build (xi=0) each
warehouse

• Objective is to minimize fixed plus shipping costs

Computing bounds

• Lower (optimistic) bound at each node is sum of:(p)
– Minimum transport cost over all built or unknown warehouses
– Fixed cost of built warehouses

• Upper (pessimistic) bound at each node is sum of
– Minimum transport cost over all built warehouses
– Fixed cost of built warehouses

• Pruning rules
– If minimum (pessimistic) savings from building a warehouse

are greater than its fixed cost we build itare greater than its fixed cost, we build it
– If maximum (optimistic) savings from building a warehouse

are less than its fixed cost, we don’t build it
• All combinations are feasible in this problem, so there is no

reduction in the size of the tree from feasibility constraints
– We can introduce capital budget constraints in some cases

Pruning rules from Akinc, Khumwala

•

Computational strategy

•	 Start at root node
–	 Apply upper and lower bound at root
–	 Try to lock in or lock out some warehouses

•	 Then create tree node with arbitrary warehouse
locked in or out
–	 Apply upper and lower bound at this node
–	 Try to lock in or lock out additional warehouses
–	 Generate children if bounds don’t prune them

•	 Use stack, queue or heapp to hold children , q
•	 Continue until all E-nodes have been explored

–	 Output optimal solution
–	 Difference between lower and upper bound decreases

as algorithm continues
•	 We can stop when the difference is small enough, even

without an exact optimal solution

Computational example: root node

•	 Root node
–	 All warehouses xi are unknown
–	 Upper bound at root is “infinity”, by convention
–	 Lower bound at root is sum of:

•	 Cost of built warehouses (none) plus
•	 Minimum transport cost over all built or unknown

warehouses, which is all of them. Lower bound= 21
–	 Use convention:

•	 x= 1 is built warehouse
•	 x= 0 is unknown warehousex= 0 is unknown warehouse
•	 x= -1 is warehouse not built

–	 Thus, root node solution is {0, 0, 0, 0}

4

5

Pruning rules at root
• Minimum savings at all warehouses (if warehouse

is cheapest, compare it with next cheapest):
Warehouse Fixed cost Minimum Pruning

k f[k] 0 1 2 3 4 i d i i
Cost to ship to customer j

• Maximum savings at all warehouses (compare it
with most expensive):
Warehouse Fixed cost Maximum PruningCost to ship to customer j

k f[k] 0 1 2 3 4 savings decision
0 4 3 10 8 18 14 5 x0=1
1 6 9 4 6 5 5 5 None
2 6 12 6 10 4 8 1 None
3 8 8 6 5 12 9 1 None

• Thus we are able to prune the x0 branch of the tree

k f[k] 0 1 2 3 4 savings decision
0 4 3 10 8 18 14 11 None
1 6 9 4 6 5 5 35 None
2 6 12 6 10 4 8 24 None
3 8 8 6 5 12 9 24 None

Orange is cheapest warehouse to serve customer; gray is next cheapest

Tree from root

x= {0,0,0,0}
Upper bound= ∞

2

65

x0=1 x0=-1

x1=1 x1=-1 x1=1 x1=-1

x2=-1 x2=1 x2=-1 x2=1

Pruned
Lower bound= 21+0=21

x= {1,0,0,0}
Upper bound= 53+4=57
Lower bound= 21+4=25

Generate E node to left of root:

•

0

1

22

Generate E-node

• Generate E-node to left of root:
– Warehouse 0 is built (x0= 1 in root solution)

• Compute upper and lower bounds at E-node
– All customers served from warehouse 0
– Upper bound= 4 (fixed cost) + 53 (transport cost)= 57

• Assume all customers served from warehouse 0
– Lower bound= 4 (fixed cost) + 21 (transport cost) = 25

• Assume customers served from built and unknownAssume customers served from built and unknown
warehouses

• No further pruning is possible at this node
• Arbitrarily branch on warehouse 1. Set x1= 1

E node bounds

x= {0,0,0,0}
Upper bound= ∞

2

65

x0=1 x =-1

x1=1 x1=-1 x1=1 x =-1

x2=-1x2=1x =-1 x =1

Pruned
Lower bound= 21+0= 21

x= {1,0,0,0}
Upper bound= 53+4=57
Lower bound= 21+4=25

x= {1,1,0,0}
Upper bound= 23+10=33Upper bound 23+10 33
Lower bound= 21+10=31

6

7

Pruning rules at E-node

• Minimum savings at all warehouses:
Warehouse Fixed cost Minimum Pruning

k f[k] 0 1 2 3 4 i d i i
Cost to ship to customer j

• Maximum savings at all warehouses:

k f[k] 0 1 2 3 4 savings decision
0 4 3 10 8 18 14 NA NA
1 6 9 4 6 5 5 NA NA
2 6 12 6 10 4 8 1 None
3 8 8 6 5 12 9 1 None

Warehouse Fixed cost Maximum Pruning
k f[k] 0 1 2 3 4 savings decision

Cost to ship to customer j

• Thus we are able to prune the x2 and x3 branches
of the tree

0 4 3 10 8 18 14 NA NA
1 6 9 4 6 5 5 NA NA
2 6 12 6 10 4 8 1 x2=-1
3 8 8 6 5 12 9 1 x3=-1

Yellow is cheapest warehouse to serve customer; gray is next cheapest

E node bounds

x0=1 x0=-1 Pruned

x= {0,0,0,0}
Upper bound= ∞
Lower bound= 21+0= 21

x= {1,0,0,0}
Upper bound= 53+4=57

2

65

x1=1 x1=-1 x1=1 x1=-1

x2=-1 x2=1 x2=0 x2=1

Upper bound 53+4 57
Lower bound= 21+4=25

x= {1,1,0,0}
Upper bound= 23+10=33
Lower bound= 21+10=31 x2=-1

x = 1

x2=1

x =1Pruned x3=-1

x= {1,1,-1,-1}
Upper bound= 23+10=33
Current best solution= 33

We now have just one E-node left to explore

x3=1

Leaf node

8

Pruning rules at E-node

• Minimum savings at all warehouses:Minimum savings at all warehouses:

• This locks in warehouse 2
– We don’t do the maximum savings calculation

WarehouseFixed cost Minimum Pruning
k f[k] 0 1 2 3 4 savings decision
0 4 3 10 8 18 14 NA NA
1 6 9 4 6 5 5 NA NA
2 6 12 6 10 4 8 8 x2=1
3 8 8 6 5 12 9 3 None

Cost to ship to customer j

– We don t do the maximum savings calculation
– We next compute the bounds at the new node (x2= 1)

E node bounds

x0=1 x0=-1 Pruned

x= {0,0,0,0}
Upper bound= ∞
Lower bound= 21+0= 21

x= {1,0,0,0}
Upper bound= 53+4=57

2

6

x1=1 x1=-1 x1=1 x1=-1

x2=-1 x2=1

Upper bound 53+4 57
Lower bound= 21+4=25

x= {1,1,0,0}
Upper bound= 23+10=33
Lower bound= 21+10=31 x2=-1

x = 1

x2=1

x =1Pruned

x2=-1

x= {1 1 1 0}

x2=1

x3=-1

x= {1,1,-1,-1}
Upper bound= 23+10=33
Current best soln= 33

x3=1 x= {1,-1,1,0}
Upper bound= 29+10=39
Lower bound= 26+10=36

Bounded:
lower bound > best solution

Termination

•	 We are done:
–	 There are no more live nodes
–	 All have either been pruned

•	 Maximum savings < fixed cost or
•	 Minimum savings > fixed cost

–	 Or bounded
•	 Lower bound > best solution so far

•	 Optimal solution is the best solution found:
–	 {1, 1, -1,1, -1}{1, 1, 1}
–	 Cost= 33

•	 We examined 7 nodes in tree out of 31
–	 In larger problems, we can only examine a small fraction of

total nodes, since there are 2n nodes for n 0-1 variables

Algorithm pseudocode
public boolean branchAndBound() {

upperBound= infinity;
eNode= root;
initialize queue empty; // Holds children of eNode
bound(root);
if (root is leaf) { upperBound= cost(root); answer= {root};};if (root is leaf) { upperBound= cost(root); answer= {root};};
do {

generate left and right child at first xi=0 of eNode;

bound(left child); // May also generate/prune nodes

bound(right child); // May also generate/prune nodes

for each child w of eNode {

if (lowerBound(w) < upperBound) {

if (w is a leaf) { upperBound= lowerBound(w); answer= {w} };
else {
add w to queue;
if (upperBound(w) + TOLERANCE < upperBound)
upperBound= upperBound(w) + TOLERANCE;

}

}

do {

if (queue empty) return;

delete eNode from front of queue;

} while (lowerBound(eNode) >= upperBound);

} while (number of children < maximum number of children);

9

Algorithm operation

•	 We can change algorithm from classical breadth first
search (BFS) to D-search or LC-search by substituting a
stack or heap for the queue
–	 LC search can use lower bound,, ppupper bound or other criteria

as priority to explore child
•	 We don’t store parent of node

–	 We store answer array, from which we generate children
–	 BFS, D-search and LC-search never backtrack, so parent is not

needed
–	 If you want to backtrack, then store parent
–	 Our bound() methods can generate several children during

their calculations
• This makes it more convenient for us to store the answer array

•	 One special case is not handled in our code:
–	 If all costs from warehouses to customers are equal, maximum

savings from any warehouse will be zero and all warehouses
will be closed at root node

•	 If this occurs, we know only one warehouse needs to be open
•	 Pick the cheapest.

Branch and bound example

10

Branch and bound example

•	 Shipping sugar harvest from Brazil for export
•	 WWarehhouse custtomers: noddes 00 th throughh 49 49

–	 Ship product to warehouse
–	 Each customer has a quantity produced and shipped
–	 Each arc in highway network has a cost

•	 Warehouses: nodes 50 through 57
–	 Warehouses are on rail lines, ship to port by rail
–	 Each warehouse has fixed cost,, if built
–	 No capacity constraint

•	 Which warehouses do we build to minimize cost?
–	 What customers ship to each warehouse?
–	 What are flows, costs for each customer and

warehouse?

LC-search branch and bound

•	 LCBB.jjava ((least-cost search)) impports
import src.dataStructures.Heap; // LC-search

import src.greedy.Graph; // Used by all BB codes

–	 Use nested class BBNode to allow LC-search to use lower bound,
upper bound or answer array to select next node to search

•	 DBB.java (D-search) and BFSBB (breadth-first search) import
import src.dataStructures.Stack; // For D-search only

import src.dataStructures.Queue; // For BFS search only

import src.greedy.Graph; // Used by all BB codes

–	 Stack and queue implementations use BBNode as well, to
demonstrate interchangeability of code

•	 BBArray.java uses BFS and ‘raw’ arrays rather than a BBNode
(branch and bound) nested class like the first three
–	 There are extensive comments in the BBArray.java file
–	 All classes use java.io.* and java.util.*

11

http:java.io.*

 d b i l l i

i i [] il // b il h

Code outline

Graph class: constructor, shortHK()
LCBB class:

LCBB data members: input, calculation, output
BBNode inner class: data members, constructor, compareTo()
LCBB() constructor
bbNetwork(): read warehouse.txt input data

branchAndBound():
setC(): call g.shortHK() on all warehouses, create costs
initializeBB(): cost initialization, create root of BB tree
bb(): branch-and-bound algorithm
bound(): compute min, max savings, lower/upper bounds

warehouseBound(): compute min max savings at 1 warehouse warehouseBound(): compute min, max savings at 1 warehouse
bbAssign(): postprocess output, assign customer to warehouse
bbOutput(): prints out solution, costs, flows

main():

create Graph object g

create LCBB object w

call w.branchAndBound()

LCBB data members

public class LCBB {

// Input data
private int nw; // Number of potential warehouses
private int nc; // Number of customers
private int[] f; // Fixed cost of each potential warehouse
private int[][] c; // Cost from customer to warehouse
private int[] railcost; // Cost by rail, warehouse to port
private int[] prod; // Production volume from each customer
private final static int EPS= 1; // Epsilon, tolerance
private final static int MAXBBNODES= 10000;

// Data used by branch and bound calculations
private int[] savMax; // Calculated by warehouseBound()
private int[] savMin; // Calculated by warehouseBound()
private BBNode[] nodes; // Branch and bound nodes
private Heap h; private Heap h; // Keeps nodes to be visited still // Keeps nodes to be visited still

// Stack or Queue in other versions
// Solution
private int[] ans; // Solution: 1 if in,-1 if not,0 unknown
private int upperBound; // Global upper bound
private boolean optimumFound;
int[] whAssign; // Warehouse assgd to customer
int[] flow; // Flow through each warehouse

12

pr

c new cus

BBNode nested class

private class BBNode implements Comparable {
private int[] x; // Solution
private int upBound; // Upper bound (cost) estimate

ivate int lowBound; // Lower bound (cost) estimate private int lowBound; // Lower bound (cost) estimate

public BBNode() {
x= new int[nw];

}
// Place node with lowest lower bound at top of heap
public int compareTo(Object other) {

BBNode o= (BBNode) other;
if (lowBound < o.lowBound)

return 1;;
else if (lowBound > o.lowBound)

return -1;
else

return 0;
}

} // Can create general rule for which node is at top

LCBB constructor

public LCBB(String filename) {
// Input data
bbNetwork(filename);

int[nw+1][nc]; // Cost matrix t whsec= new int[nw+1][nc]; // Cost matrix, cust-whse
// Last row holds max cost

// Data used by branch and bound calculations
savMax= new int[nw];
savMin= new int[nw];
nodes= new BBNode[MAXBBNODES];
// Allocate all BBNode memory first
for (int i= 0; i < MAXBBNODES; i++)

nodes[i]= new BBNode();
h= new Heap(); // Or Stack or QQueue p(); //

// Solution

ans= new int[nw];

upperBound= Integer.MAX_VALUE;

whAssign= new int[nc];

flow= new int[nw];

}

13

bbNetwork: read warehouse input file
public void bbNetwork(String filename) {

try {

FileReader fin= new FileReader(filename);

BufferedReader in= new BufferedReader(fin);

nc= Integer.parseInt(in.readLine());

nw= Integer.parseInt(in.readLine());

f= new int[nw];

railcost= new int[nw];

prod= new int[nc+nw];

for (int i=0; i < nw; i++) {

String str = in.readLine();

StringTokenizer t = new StringTokenizer(str, ",");

int wNumber= (Integer.parseInt(t.nextToken()));

railcost[i]= (Integer.parseInt(t.nextToken()));

f[i]=f[i]= (Integer parseInt(t nextToken()));(Integer.parseInt(t.nextToken()));

}

for (int i= 0; i < nc; i++) {

String str = in.readLine();

StringTokenizer t = new StringTokenizer(str, ",");

int cNumber= (Integer.parseInt(t.nextToken()));

prod[i]= (Integer.parseInt(t.nextToken()));

}

in.close(); … // Catch exception, and end method

setC()
public void setC(Graph g) {

int[][] DW= new int[nw+1][nc+nw];

int[][] PW= new int[nw+1][nc+nw];

int nodes= g.getNodes();

for (int root= nc; root < (nc + nw); root++) {

g.shortHK(root);

int[] D= g.getD();

int[] P= g.getP();

for (int i= 0; i < nodes; i++) {

DW[root-nc][i]= D[i];

PW[root-nc][i]= P[i];

}
}

}

for (int k= 0; k < nw; k++)

for (int j= 0; j < nc; j++)

c[k][j]= (DW[k][j] + railcost[k])* prod[j];

}

14

 we

initializeBB()
public void initializeBB() {

for (int m= 0; m < nc; m++) { // Write highest cost

int temp= 0;

for (int j= 0; j < nw; j++)

if (c[j][m] > temp)

temp= c[j][m];

c[nw][m]= temp;

}

// bound returns true if leaf

if (bound(0)) { // Find upper, lower bounds

upperBound= nodes[0].lowBound;

for (int k= 0; k < nw ; k++)

ans[k]= nodes[0] x[k];ans[k]= nodes[0].x[k];

}

// If all warehouses closed at root, select cheapest

// one. This special case not handled.

}

public boolean bb() { bb()
BBNode eNode= nodes[0]; // Root, node 0, is the first e-node

int i= 0; // Root is 0th node in tree

int inOut= 1; // Toggles between -1 and +1

do { // Infinite loop until queue empty

int w= -1;

do { w++; // Find first warehouse with unknown status

} while (!(eNode.x[w] == 0 || w >= nw));

if (w < nw) { // If unknown warehouse found, gen children

for (int z=0; z <=1; z++) {

i++; // Generate child

for (int j= 0; j < nw; j++)

nodes[i].x[j]= eNode.x[j]; // Copy parent's solution

nodes[i].x[w]= -inOut; // Set unknown whse state

boolean leaf= bound(i); // Bound this child (t if leaf)

if (nodes[i].lowBound < upperBound) { // If worth going

if (leaf) { // If child is leaf // If child is leaf, we have new optimum if (leaf) { have new optimum

upperBound= nodes[i].lowBound; // Update upper bound

for (int k= 0; k < nw; k++)

ans[k]= nodes[i].x[k]; // Update solution

} else { // Child is not leaf

h.insert(nodes[i]); // Add to heap

if (nodes[i].upBound + EPS < upperBound)

upperBound= nodes[i].upBound + EPS; // Update upper

} } } } // Continues on next slide

15

bb(), p.2

do { // Find new e-node

if (h.isEmpty()) // If heap empty, we're done

return true; // Found optimum

eNode= (BBNode) h.delete(); // Get e-node from heap

} while (eNode.lowBound >= upperBound);

} while (i < MAXBBNODES-2);

return false; // Generated maximum nodes w/o finding optimum

}

bound()
private boolean bound(int i) { // Returns true if leaf node

boolean change;

do { // Lock in/out warehouses based on max/min savings

change= false;

for (int k= 0; k < nw; k++)

if (nodes[i].x[k] == 0)

warehouseBound(i, k); // Find min, max savings for k

for (int k= 0; k < nw; k++) {

if (nodes[i].x[k] == 0) {

if (savMin[k] - f[k] >= 0) {

change= true;

nodes[i].x[k]= 1; // Lock in warehouse

for (int j= 0; j < nc; j++)for (int j= 0; j < nc; j++)

if (c[k][j] < c[nw][j])

c[nw][j] = c[k][j];

}

if (savMax[k] - f[k] <= 0) {

change= true;

nodes[i].x[k]= -1; // Lock out warehouse

} } } } while (change);

16

bound(), p.2
// Compute lower and upper bound. Start by adding up

// transportation costs over all customers to non-closed

// warehouses (lower bound) and to open warehouses (upper)

int lowc= 0, minc= 0, uppc= 0, maxc= 0;

for (int j= 0; j < nc; j++) {

minc= Integer.MAX_VALUE;

maxc= c[nw][j];

for (int k= 0; k < nw; k++)

if ((nodes[i].x[k] != -1) && (c[k][j] < minc))

minc= c[k][j]; // Find min transportation cost

if (minc == Integer.MAX_VALUE)

minc= 0;

lowc += minc;lowc += minc;

uppc += maxc;

}

bound(), p.3
// Add fixed costs of open warehouses to lower and upper

// bounds, fixed cost of unknown warehouses to upper bound

boolean leaf= true;

for (int k= 0; k < nw; k++) {

if (nodes[i].x[k] == 1) {

lowc += f[k];

uppc += f[k];

}

if (nodes[i].x[k] == 0) {

leaf= false;

uppc += f[k];

}

}
}

nodes[i].lowBound = lowc;

nodes[i].upBound = uppc;

return leaf;

}

17

warehouseBound()
private void warehouseBound(int i, int wh) {

// Find minimum and maximum savings for a warehouse

// i= current node, wh= warehouse being examined

int minSav= 0;

int maxSav= 0;

for (int h= 0; h < nc; h++) { // Loop thru each customer

minSav= Integer.MAX_VALUE;

if (c[wh][h] < c[nw][h])

maxSav= c[nw][h] - c[wh][h];

else

maxSav= 0;

for (int g= 0; g < nw ; g++) // Loop thru each warehouse

if ((g != wh) && (nodes[i] x[g] != 1) && if ((g != wh) && (nodes[i].x[g] != -1) &&

((c[g][h] - c[wh][h]) < minSav))

minSav= c[g][h] - c[wh][h];

if (minSav == Integer.MAX_VALUE || minSav < 0)

minSav= 0;

savMin[wh] += minSav;

savMax[wh] += maxSav;

}

}

bbAssign()
// Output method, after solution is computed

public void bbAssign() {

for (int k= 0; k < nc; k++) {

int temp= Integer.MAX_VALUE;

for (int j= 0; j < nw; j++) {

if (c[j][k] < temp && ans[j]== 1) {

temp= c[j][k];

whAssign[k]= j;

}

}

}

for (int k=0; k < nc; k++)

flow[whAssign[k]] += prod[k];flow[whAssign[k]] += prod[k];

}

18

t t

bbOutput()
public void bbOutput() { // More output

System.out.println("Optimum found? "+ optimumFound);

if (!optimumFound) { // This code only lightly tested

System.out.println("Upper bound: " + upperBound);

// Go through all E nodes in heap to find lowest lower bound

int lowerBound= Integer.MAX_VALUE;

while (!h.isEmpty()) {

BBNode n= (BBNode) h.delete();

if (n.lowBound < lowerBound)

lowerBound= n.lowBound;

}

System.out.println("Lower bound: " + lowerBound);

}}

// If no leaf node visited yet, answer array will be all zeros.

// Can insert code here to set ans array= x array of node with

// best lower bound. Not done.

// Continues on next slide

bbOutput(), p.2
int constr= 0;

System.out.println("\nCenter \tConstruct? \tFixed Cost");

for (int j= 0; j < nw; j++) {

System.out.println(j+"\t\t"+ ans[j]+ "\t\t"+ f[j]);

if ((ans[j][j] == 1))

constr += f[j];

}

int trans= upperBound - constr;

System.out.println("\nTransport cost: "+ trans +

" fixed cost: "+ constr);

System.out.println("\nFlow through consolidation centers");

System.out.println("Center\tTons");

for (int j= 0; j < nw ; j++)

S i tl (j "\t" fl [j]) System.out.println(j + "\t"+ flow[j]);

for (int j= 0; j < nw; j++)

if (ans[j] == 1) {

System.out.println("\nAreas that ship to center "+ j);

for (int k= 0; k < nc; k++)

if (whAssign[k] == j)

System.out.print(" " + k);

}

}

19

branchAndBound(), main()
public void branchAndBound(Graph g) {

setC(g);

initializeBB();

optimumFound= bb();

bbAssign();
g ();

bbOutput();

}

public static void main(String[] args) {

Graph g= new Graph("src/bb/graph.txt");

LCBB w= new LCBB("src/bb/warehouse.txt");

w.branchAndBound(g);

}

}}

20

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

