1.204 Lecture 16

Branch and bound:
Method, knapsack problem

Branch and bound

» Technique for solving mixed (or pure) integer
programming problems, based on tree search
— Yes/no or 0/1 decision variables, designated x;
— Problem may have continuous, usually linear, variables
— O(2") complexity
* Relies on upper and lower bounds to limit the number of

combinations examined while looking for a solution
« Dominance at a distance

— Solutions in one part of tree can dominate other parts of tree
— DP only has local dominance: states in same stage dominate
« Handles master/subproblem framework better than DP

e Same problem size as dynamic programming, perhaps a
little larger: data specific, a few hundred 0/1 variables

— Branch-and-cut is a more sophisticated, related method

* May solve problems with a few thousand 0/1 variables
 Its code and math are complex

« If you need branch-and-cut, use a commercial solver

Branch and bound tree

« Every tree node is a problem state

— ltis generally associated with one 0-1 variable, sometimes a
group

— Other 0-1 variables are implicitly defined by the path from the
root to this node

* We sometimes store all {x} at each node rather than tracing back

— Still other 0-1 variables associated with nodes below the
current node in the tree have unknown values, since the path
to those nodes has not been built yet

Generating tree nodes

» Tree nodes are generated dynamically as the
program progresses
— Live node is node that has been generated but not all of
its children have been generated yet
— E-nodeis alive node currently being explored. Its
children are being generated
— Dead node is a node either:
* Not to be explored further or
< All of whose children have already been explored

Managing live tree nodes

« Branch and bound keeps alist of live nodes. Four
strategies are used to manage the list:
— Depth first search: As soon as child of current E-node is
generated, the child becomes the new E-node
» Parent becomes E-node only after child’s subtree is explored
* Horowitz and Sahni call this ‘backtracking’
— Inthe other 3 strategies, the E-node remains the E-node until it
is dead. Its children are managed by:
* Breadth first search: Children are put in queue
* D-search: Children are put on stack
* Least cost search: Children are put on heap
— We use bounding functions (upper and lower bounds) to kill
live nodes without generating all their children
* Somewhat analogous to pruning in dynamic programming

Knapsack problem (for the last time)

p, 20,w,>0,0<i<n

The x; are 0-1 variables, like the DP and unlike the greedy version

Tree for knapsack problem

Node numbers are generated but have no problem-specific meaning.
We will use depth first search.

Knapsack problem tree

o Left child is always x;= 1 in our formulation
— Right child is always x;= 0

¢ Bounding function to prune tree
— At alive node in the tree

« If we can estimate the upper bound (best case) profit at that node,
and

« If that upper bound is less than the profit of an actual solution
found already

e Then we don’t need to explore that node
— We can use the greedy knapsack as our bound function:
» It gives an upper bound, since the last item in the knapsack is
usually fractional
— Greedy algorithms are often good ways to compute upper
(optimistic) bounds on problems
* E.g., For job scheduling with varying job times, we can cut each
job into equal length parts and use the greedy job scheduler to get
an upper bound
— Linear programs that treat the 0-1 variables as continuous
between 0 and 1 are often another good choice

Knapsack example (same as DP)

Item Profit Weight

0 0
11 1
21 11
31 21
33 23
43 33
53 43
55 45
65 55

O INO|OPA|IWIN|F|O

* Maximum weight 110
* |tem Ois sentinel, needed in branch-and-bound too

164.88 <:>

‘Y(l):i'. \"/(n:o_

@ 155.11 O
Y@) e “vomo
@ 157.44 O
e T T Yo=o_
159.76 @
Y@=t T YH=0._ \}14).:_0
<:> 160.22 <:> 154.88

Ye) =1 v<5) 0 YG) -1

y(s) 0 Y(6)= Y(6)=0 y«,):]’ Y(6)=0

164.66 <:> . 16]63C> ®1s979 <:> 5933
v<7) 0 : Y(7) 0
() wO @ Om On O

Y($)=0

"B W@ On @

’ Knapsack Solution Tree

Figure by MIT OpenCourseWare. Source: Horowitz/Sahni previous edition

Knapsack solution tree

* Numbers inside a node are profit and weight at that node, based
on decisions from root to that node

* Nodes without numbers inside have same values as their parent

* Numbers outside the node are upper bound calculated by greedy
algorithm

— Upper bound for every feasible left child (x;=1) is same as its parent’s
bound

— Chain of left children in tree is same as greedy solution at that point in
the tree

- }Nfet OR!I)/drecompute the upper bound when we can’t move to a feasible
eft chi
« Final profit and final weight (lower bound) are updated at each leaf
node reached by algorithm
— Nodes A, B, C and D in previous slide
— Solution improves at each leaf node reached
— No further leaf nodes reached after D because lower bound (optimal
value) is sufficient to prune all other tree branches before leaf is
reached
« By using floor of upper bound at nodes E and F, we avoid
generating the tree below either node
— Since optimal solution must be integer, we can truncate upper bounds
— By truncating bounds at E and F to 159, we avoid exploring E and F

KnapsackBB constructor

public class KnapsackBB {

private DPltem[] items; /7 Input list of items

private int capacity; // Max weight allowed In knapsack

private int[] x; // Best solution array: item 1 in if xi=1
private int[] y; // Working solution array at current tree node
private double solutionProfit= -1; // Profit of best solution so far
private double currWgt; // Weight of solution at this tree node
private double currProfit; // Profit of solution at this tree node
private double newWgt; /7 Weight of solution from bound() method
private double newProfit; /7 Profit of solution from bound() method
private int k; /7 Level of tree in knapsack() method
private int partltem; /7 Level of tree in bound() method

public KnapsackBB(DPltem[] i, int c) {
items= i;
capacity= c;
x= new int[items.length];
y= new int[items.length];

KnapsackBB knapsack()
public void knapsackQ {
int n= items.length; // Number of items in problem
do { // While upper bound < known soln,backtrack
while (bound() <= solutionProfit) {
while (k = 0 && y[k] !'= 1) // Back up while item k not in sack

k--; // to find last object in knapsack

if (k ==0) // If at root, we’re done. Return.
return;

y[k]= 0; // Else take k out of soln (R branch)

currWgt -= items[k].-weight; // Reduce soln wgt by ks wgt
currProfit -= items[k]-profit; // Reduce soln profit by k’s prof

} // Back to while(), recompute bound

currWgt= newWgt; // Reach here if bound> soln profit

currProfit= newProfit; // and we may have new soln.

k= partltem; // Set tree level k to last, possibly
// partial item in greedy solution

if (k=n) { // If we’ve reached leaf node, have

solutionProfit= currProfit; // actual soln, not just bound
System.arraycopy(y, 0, x, 0, y-length); // Copy soln into array x
k= n-1; // Back up to prev tree level, which may leave solution

} else // Else not at leaf, just have bound
y[k]= 0; // Take last item k out of soln
} while (true); // Infinite loop til backtrack to k=0

3

KnapsackBB bound()

private double bound(Q) {

boolean found= false; // Was bound found?l.e.,is last item partial
double boundvVal= -1; // Value of upper bound

int n= items.length; // Number of items in problem

newProfit= currProfit; // Set new prof as current prof at this node
newWgt= currWgt;

partitem= k+1; // Go to next lower level, try to put in soln

while (partltem < n && 'found) { // More items & haven’t found partial
if (newNgt + items[partitem].weight <= capacity) { /7 If fits

newWgt += items[partltem].weight; // Update new wgt, prof

newProfit += items[partlitem].profit; // by adding item wgt,prof

y[partitem]= 1; // Update curr soln to show item k is in it
} else { // Current item only fits partially

boundvVal= newProfit + (capacity —
newWgt)*items[partltem].profit/items[partltem].weight;

found= true; } // Compute upper bound based on partial fit
partltem++; // Go to next item and try to put in sack
}
if (found) { // 1T we have fractional soln for last item in sack
partltem—; // Back up to prev item, which is fully in sack
return boundvVal; // Return the upper bound
} else {

return newProfit;// Return profit including last item
3 3

KnapsackBB main()
public static void main(String[] args) {
// Sentinel- must be in O position even after sort
DPItem[] list= {new DPltem(0, 0),
new DPItem(11, 1),
new DPItem(21, 11),
new DPItem(31, 21),
new DPItem(33, 23),
new DPItem(43, 33),
new DPItem(53, 43),
new DPItem(55, 45),
new DPItem(65, 55),
};
Arrays.sort(list, 1, list.length); // Leave sentinel in O
int capacity= 110;
// Assume all item weights <= capacity. Not checked. Discard
// Assume all item profits > 0. Not checked. Discard.
KnapsackBB knap= new KnapsackBB(list, capacity);
knap.knapsackQ);
knap.outputSolution();
}

3
// main() almost identical to DPKnap.
// DPltem identical, outputSolution() almost identical to DP code

Depth first search in branch and bound

e Depth first search used in combination with breadth first
search in many problems
— Common strategy is to use depth first search on nodes that
have not been pruned
* This gets to a leaf node, and a feasible solution, which is a lower
bound that can be used to prune the tree in conjunction with the
greedy upper bounds
— If greedy upper bound < lower bound, prune the tree!
¢ Once anode has been pruned, breadth first search is used to
move to a different part of the tree
— Depth first search bounds tend to be very quick to compute if
you move down the tree sequentially
e E.g.our greedy bound doesn’t need to be recomputed
* Linear program as bounds are often quick too: few simplex pivots

Next time

Breadth first search in branch and bound trees

Fixed facility location problem

— Mixed integer problem

— Uses linear program (LP) as subproblem

— We solve the LP with a shortest path algorithm!

The depth first search for the knapsack problem
is mostly pedagogical

— Sometimes depth first search works well enough for
your particular problem and data

— Usually you need to be a bit more sophisticated

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

