
1.204 Lecture 15 

Dynamic programming:

Knapsack
Knapsack 

When multistage graphs don’t work 

•	 If the resource has many levels: 
–	 Largge rangge of ints 
–	 Floating point number 

•	 Then the multistage graph can’t be constructed 
– And label correction is not a sufficient implementation for pruning 

•	 We need a set representation instead 
–	 Different than our Set data structure, alas 

•	 We keep all the elements in the solution at any stage in a 
set 
–	 W d i t d lWe purge dominated elementts 
–	 In a knapsack problem, for example, we purge any element 

whose weight is same or higher and its profit is same or lower 
than another element 

–	 This is how we implement pruning 
•	 We still need to structure the problem so that feasibility

constraints keep the size of the sets low 
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Knapsack problem

• Problem is modeled as a series of decisions onProblem is modeled as a series of decisions on 
whether to include item 1, item 2, item 3, …
– Each item has a profit (benefit) and a weight (cost)
– The knapsack has a maximum weight (cost)
– Each project is either in or out of the knapsack

• No fractional values allowed, as were in the greedy version
• Algorithm

Forward pass: builds sets instead of graph– Forward pass: builds sets instead of graph
• Sets contain cumulative (profit, weight) pairs

– Backward pass: traces sets back from sink to source to 
recover solution

– Algorithm can produce solution for all weights less than 
or equal to maximum weight in a single run

First example

Item Profit Weight

• Maximum weight= 9

g
0 0 0
1 1 2
2 2 3
3 5 4

g
• Item 0 is a sentinel with 0 weight, 0 profit always



Forward pass: build sets 

•	 S(0)= (0,0) S holds cumulative profit, weight 
(1,2) S’ is set of items to merge • SS’= (1,2) S is set of items to merge 

• S(1)= (0,0) (1,2) S(n) is merged S(n-1) and S’ 
• S’= (2,3) (3,5) 
• S(2)= (0,0) (1,2) (2,3) (3,5) 
• S’= (5,4) (6,6) (7,7) (8,9) 
• S(3)= (0,0) (1,2) (2,3) (5,4) (6,6) (7,7) (8,9) 

– Note that (3,5) is purged when S(3) is constructed 
– It is dominated by (5,4): higher profit, lower weight 

• If maximum weight were 7, (8,9) pair would not be built 
– Infeasibility 

Backward pass: get solution 
• S(0)= (0,0)	 Item 

• S(1)= (0,0) (1,2)	 (1,2)


• S(2)= (0,0) (1,2) (2,3) (3,5)	 (2,3)


• S(3)= (0,0) (1,2) (2,3) (5,4) (6,6) (7,7) (8,9) (5,4)


• Maximum weight:  4 55 6 7 8 96 7 8 9• Maximum weight: 4 
– Last pair is optimal (profit, weight) for entire problem 

• If pair exists in previous set, item not in solution 
• If pair not in previous set, item is in solution 

– Subtract item profit, weight and find that pair in previous set 
– Continue to trace back to source node 
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Second example
Item Profit Weight

0 0 0
1 11 1
2 21 11
3 31 21
4 33 23
5 43 33
6 53 43

• Maximum weight 110
• Item 0 is sentinel

7 55 45
8 65 55

Forward pass: build sets

Traceback uses same logic as before



t t

Algorithm implementation 

•	 Follows examples, but there are complications: 
– We must keep each set S(i) to trace back the answer 

•	 In example 1, if we kept only the final set S(3), the pair (3,5) 
would have been purged and we would not be able to trace 
back the solution 

•	 Pairs dominated by pairs considered later can still be part 
of an optimal subsequence in the optimal solution 

•	 Storage requirements for all the sets are significant 
–	 We discard S’ at each step 

– The sets are of varying and difficult-to-predict length 
•	 WWe use JJava AArrayLi  Lists 

–	 O(1) add() method, which is all we use 
–	 Allow flexible number of pairs to be stored 

–	 The dominance operation is difficult to code 
–	 A sentinel, item 0, with 0 profit and 0 weight is needed 

• Must be at start of input regardless of input sort order 

Algorithm implementation 2 

•	 We sort the items in descending profit/weight 
order as in the greedy algorithm order, as in the greedy algorithm 
–	 Putting ‘good’ items into the solution early usually

allows more pruning to occur 
–	 Our dominance operation must handle any item order 

•	 An alternative is to sort the items in descending
weight order, if many items’ weights are large 
relative to the knapsack maximum weight 
– Thi k ll f ibilitThis may make thhe sets smaller bbecause feasibility

constraints eliminate many combinations early 
•	 It’s always good to run the greedy version first 

–	 If it finds an integer solution, it’s optimal 
–	 Even if it doesn’t, its solution will give you insights on 

the nature of your problem data, and an approximate 
solution in case your DP doesn’t terminate 
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Generalizing the set-based dynamic 
programming code 

•	 We use ints in this implementationWe use ints in this implementation 
– Can handle doubles but must use TOLERANCE when 

computing dominance to manage numerical error 
•	 This implementation can be modified to handle 

other dynamic programming problems that can’t 
be done with a multistage graph 
– E.g., the jjob scheduling dyynamic proggram would keep ag , g p  p  

triplet (profit, time, deadline) instead of (profit, weight) 
–	 The dominance calculation would need to be modified to 

match the problem statement 
• The changes aren’t as tough as writing it the first time 

DPItem 
public class DPItem implements Comparable { 

int profit; 
int weight; 

public DPItem(int p, int w) {

profit= p;

weight= w;


} 
public boolean equals(Object other) {


DPItem o= (DPItem) other;

if (profit == o.profit && weight == o.weight)


return true;

else


return false;

}

public int compareTo(Object o) {


DPItem other = (DPItem) o;
DPItem other = (DPItem) o;

double ratio= (double) profit/weight;

double otherRatio= (double) other.profit/other.weight;

if (ratio > otherRatio) // Descending sort


return -1; 
else if (ratio < otherRatio) 

return 1; 
else 

return 0; 
} } // toString() method not shown 
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DPSet constructor, extend() 
public class DPSet { 

ArrayList<DPItem> data;  // Flexible capacity, fast add 

private static int capacity; // Maximum weight 

public DPSet() {

data= new ArrayList<DPItem>();


}


public static void setCapacity(int c) {

capacity= c;


}


public DPSet extend(DPItem other) {     // Add item to set 

DPSet result= new DPSet(); 

for (DPItem i: data) {for (DPItem i: data) { 

int cumWgt= i.weight + other.weight; 

if (cumWgt <= capacity) { 

int cumProf= i.profit + other.profit; 

result.data.add(new DPItem(cumProf, cumWgt)); 

}

}

return result;


} 

DPSet merge(), p. 1 
public DPSet merge(DPSet other) { 

// Merges DPSet other with this DPSet, with dominance pruning 

// Items in any input sort order wind up in weight order

DPSet result= new DPSet();
(); 

// Define limits for while loop on DPSet other 

int indexOther= 0; 

int maxIndexOther= other.data.size()-1; 

// Last item profit used for dominance check at end of set 

int lastItemProfitOther= other.data.get(maxIndexOther).profit; 

// Define limits for while loop on this DPSet

int index= 0;

iint maxII dndex= data.siize()-1;
d t  ()  1

int lastItemProfit= data.get(maxIndex).profit;


// Continues on next slide, which compares items and other items 
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Dominance 

• If item weigght < other weigght 
– Write item to results; it cannot be dominated 
– If other profit <= item profit, other is dominated; skip it 

• Keep looping over next other items ‘til not dominated 
• If item weight= other weight 

– If item profit >= other profit 
• Skip other item; it’s dominated 

– Else skip item; it’s dominated 
– Don’t write either of them into solution yetDon t write either of them into solution yet 

• Either may be dominated by a previous pair. 
• Wait for next comparison 

• If other weight < item weight 
– Same logic as first case holds 

DPSet merge(), p. 2 
while (index <= maxIndex || indexOther <= maxIndexOther) { 

if (index <= maxIndex && indexOther <= maxIndexOther) { // Both ok

DPItem item= data.get(index);

DPItem otherItem= other.data.get(indexOther);

if ((item.weigght < otherItem.weigght))  {  {

result.data.add(item); // Add item; not dominated by other item 

index++; 

while (otherItem.profit< item.profit && indexOther< maxIndexOther) 

otherItem= other.data.get(++indexOther); // Other dominated,skip 

} else if (item.weight == otherItem.weight) { 

if (item.profit >= otherItem.profit) // Other item dominated 

indexOther++; 

else 

i d  // It  d i d 

} 

index++; // Item dominated 

} else { // otherItem.weight < item.weight 

result.data.add(otherItem);  // Add other item, not dominated 

indexOther++; 

while (item.profit < otherItem.profit && index < maxIndex) 

item= data.get(++index); // Item dominated; skip it 

} //  Continues on next slide, within while loop; end condition 
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DPSet merge(), p. 3 

// One loop index is already at end. Handle remaining in other set 

else if (index > maxIndex) { // Only other items left to consider 

while (indexOther <= maxIndexOther) { while (indexOther <  maxIndexOther) {

DPItem otherItem= other.data.get(indexOther);

if (otherItem.profit > lastItemProfit)

result.data.add(otherItem);


indexOther++;

}


} else { // indexOther > maxIndexOther. Only items left

while (index <= maxIndex) {


DPItem item= data.get(index);

if (item.profit > lastItemProfitOther)

result.data.add(item);


index++;

}


}

}

return result;


} 

DPKnap constructor, knapsack() 
public class DPKnap { 

private DPItem[] items; // Input items 

private int m; // Capacity of knapsack 

private DPSet[] sets; // Subsequences, sets 

private DPItem[][]   solution;; // Solution with opptimal items onlyyp // 

public DPKnap(DPItem[] i, int maxCap) {

items= i;

m= maxCap;

sets= new DPSet[items.length];

solution= new DPItem[items.length];


} 

bli id k k() {public void knapsack() {

buildSets();

backPath();

outputSolution();


} 
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DPKnap buildSets() 
private void buildSets() { 

DPSet.setCapacity(m); 

// Build set 0 with node 0 

DPSet s= new DPSet(); 

////  Add item 0 to set 0. Sentinel w//0 pprofit,, weigght. 

s.data.add(items[0]); 

sets[0]= s; 

// For sets 1 and above 

for (int i= 1; i < sets.length; i++) { 

// Add item and find cumulative profit, weight pairs 

DPSet sNext= s.extend(items[i]); 

// Merge, with dominance, with prior set

 ( N  )s= s.merge(sNext);

// Store new set; needed to trace back solution

sets[i]= s;


} 

} 

DPKnap backPath() 1 
private void backPath() { 

int lastSetIndex= sets.length-1; // Start at last set 

int lastSetItem= sets[lastSetIndex].data.size()-1; 

DPItem lastItem= sets[lastSetIndex].data.get(lastSetItem); 

int cumProfit= lastItem.profit;

int cumWeight= lastItem.weight;

DPItem prevItem= lastItem;


for (int i= lastSetIndex-1; i >= 0; i--) { 

boolean itemFound= false; // Is item in previous set 

int prevSetIndex= i+1; 

DPSet currSet= sets[i]; 

int currItemIndex= currSet.data.size()-1; 

for (int j currItemIndex; j >  0; j ) {for (int j= currItemIndex; j >= 0; j--) {

DPItem currItem= currSet.data.get(j);

if (currItem.equals(prevItem)) {

itemFound= true; 

break;

}

if (currItem.weight < prevItem.weight)

break; // No need to search further


} // Continued on next slide
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DPKnap backPath() 2 

// Pair not found in preceding set; item is in solution 

if (!itemFound) { 

solution[prevSetIndex]= items[prevSetIndex]; 

cumProfit -= items[prevSetIndex]] p .profit;;[p 

cumWeight -= items[prevSetIndex].weight; 

prevItem= new DPItem(cumProfit, cumWeight); 

} // else keep searching for prev item in the next set 

} 

} 

DPKnap outputSolution() 
private void outputSolution() { 

int totalProfit= 0; 

int totalWeight= 0; 

System.out.println("Items in solution:"); 

////  Position 0 in solution is sentinel;;  don't outpput 

for (int i= 1; i < solution.length; i++) 

if (solution[i] != null) { 

System.out.println(items[i]); 

totalProfit += items[i].profit; 

totalWeight += items[i].weight; 

} 

System.out.println("\nProfit: " + totalProfit); 

System.out.println("Weight: " + totalWeight); 

} 
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DPKnap main() 
public static void main(String[] args) { 

// Sentinel- must be in 0 position even after sort 

DPItem[] list= {new DPItem(0, 0), 

new DPItem(11, 1), 

new DPItem((21,, 11),),  

new DPItem(31, 21), 

new DPItem(33, 23), 

new DPItem(43, 33), 

new DPItem(53, 43), 

new DPItem(55, 45), 

new DPItem(65, 55), 

}; 

Arrays.sort(list, 1, list.length); // Leave sentinel in position 0 

i  it 110int capacity= 110; 

// Assume all item weights <= capacity. Not checked. Discard such 

items.

// Assume all item profits > 0. Not checked.  Discard such items.

DPKnap knap= new DPKnap(list, capacity);

knap.knapsack();


} 

DPKnap example 2 output 
Items in solution: 

Profit: 11 weight: 1 

Profit: 21 weight: 11 

Profit: 31 weight: 21 

Profit: 43 weigght: 33 

Profit: 53 weight: 43 

Profit: 159 

Weight: 109 
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How a will the set based namic

a c a occas o a o s o a e ob e s

Problem size 

• How large a problem will the setproblem -based dynamic large dy 
programming approach solve? 
–	 It’s highly data-dependent 
–	 If you’re lucky, you may solve a problem with hundreds 

or even thousands of items 
•	 If maximum capacity is low, so feasibility check cuts out 

many combinations 
•	 If profit/weight sort or other heuristic is effective in pruning 

many combinations from the setsmany combinations from the sets 
–	 If you’re unlucky, the program will get to about 40 or 50 

items and stall (240 is a large number) 
•	 You may run out of storage for the sets before your 

computation time also becomes excessive 

Dynamic programming 

•	 Generally used on smaller 0-1 decision problems, often of size 20 
to 40, or perhaps 100 items 

– Dyynamic pp og rogrammingg occasionallyy works on largeg pproblems 
•	 Generally used on ‘integrated problems’ that don’t decompose

into a master problem and subproblems 
–	 We will study branch-and-bound methods next, which are better 

suited for problems that decompose 
•	 With multistage graphs, dynamic programming is a label 

correcting shortest path algorithm on a graph (that we don’t 
actually need to build) 

–	 One source (origin), one sink (destination 
–	 Running time depends on the size of the virtual graph Running time depends on the size of the virtual graph 

•	 With sets, dynamic programming uses a dominance criterion 
–	 Not as efficient as label correction, but a graph can’t be built 
–	 More effective pruning by comparing all states in a stage 

•	 Keys are to use pruning/dominance and feasibility constraints to 
keep the graph or set sizes small 

–	 Efficient implementations that don’t store unnecessary data or do 
unnecessary calculations can help significantly 
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