1.204 Lecture 11

Greedy algorithms:
Minimum spanning trees

Minimum spanning tree

If G is an undirected, connected graph, a subgraph T of G is
a spanning tree iff T is a tree with n nodes (or, equivalently,
n-1arcs)

— A minimum spanning tree is the spanning tree T of G with
minimum arc costs

O
10
14 16
© ©)
25>9 12
2 ()
(a) (b)
A graph and its minimum cost spanning tree

Figure by MIT OpenCourseWare.




Applications of minimum spanning trees

Building wiring, mechanicals
Water, power, gas, CATV, phone, road distribution networks
Copper (conventional) phone networks

MST algorithms not needed, done heuristically

Wireless telecom networks

Cell tower connectivity with microwave ‘circuits’

Cost is not a function of distance, but reliability is

East-west links preferred to north-south (ice, sun,...)

Topography matters: DEM data

Move to fiber optics as better technology

Problem is to have a cost-effective, reliable network
* Not to find the minimum spanning tree

System engineer looks at entire issue

MST is one component of a broader solution

Prim’s algorithm

Greedy method to build minimum spanning tree

Start at an arbitrary node (root)
The set of arcs selected always form atree T
 Initially the tree T is just the root. No arcs added to it yet.
The next arc (u,v) to be included in T is:
e Minimum cost arc such that
¢ Both nodes u and v are not in T already
Add arc (u,v) and nodevto T
* Mark node v as being in T, or visited (u is already in the tree)
e TU{(u,v)}is now the new tree T
End when all nodes in tree have been visited, or
« Equivalently, when (n-1) arcs have been put in the spanning tree




Prim’s algorithm example

) 0 ©)
10 @ 10 @ 10 @
& @ ® @ @ ® @ @ ®
@ 25 25
® ® 2@
(@) (b) ©
D ©) O,

10 @ 10 e 16 10, 14 e 16
Q@ @ ® Q@ © ® Q@ @© ®
25 = 25 o 12 » 12

2273) 273@) 27@)
() (e) ®
Stages in Prim's Algorithm

Figure by MIT OpenCourseWare.

Standard Prim: data members, constructor

public class Prim { // Assumes connected graph; not checked
private int nodes; // Assumes consecutive node numbers
private int[] head;
private int[] to;
private int[] dist;
private int[] P;
private boolean[] visited;
private int MSTcost;

// Predecessor node back to root
// Has node been visited

Prim(int n, int[] h, int[] t, int[] d) {

nodes = n; // Or set nodes= head.length-1
head = h;

o = t;

dist = d;




Standard Prim: prim(), p.1

public int prim(int root) {
P = new int[nodes]; // Predecessor node in MST
visited = new boolean[nodes]; // Has node been visited
for (int 1 = 0; i1 < nodes; i++) { // Initialize
PL[i] = -1; // No predecessor on path

}

visited[root] = true; // Initialize root node

// Continued on next slide

Standard Prim: prim(), p.2

for (int § = 0; 1 < nodes-1; i++) { // Add nodes-1 arcs
int minDist = Integer.MAX_VALUE;
int nextNode = -1; // Next node to be added to MST
int pred = -1; // Predecessor of next node added to MST
// Find node w/ min distance via arc from already visited set
for (int node = 0; node < nodes; node++) {
if (visited[node])
for (int arc = head[node]; arc < head[node + 1]; arc++) {
int dest = to[arc];
if (lvisited[dest] && dist[arc] < minDist) {
minDist = dist[arc];
nextNode = dest;
pred = node;
3
3
3

visited[nextNode] = true;

P[nextNode] = pred;

MSTcost += minDist; }
return MSTcost;}




Standard Prim: print(), main()

public void printQ {
System.out.printIn("i \tP");
for (int 1 = 0; i1 < nodes; i++) {
if (P[i] == -1)
System.out.printin(i + "\t-");
else
System.out.printin(i + "\t" + P[i]);
3
System.out.printIn(""MST cost: " + MSTcost);
3

public static void main(String[] args) {
// Create test data (H&S p. 237-see download)
Prim p = new Prim(nodes, hh, tt, dd);
p-prim(root);
p-printQ;

Prim’s algorithm code, standard version, output

ST O0OUDWNRERPO™m
RPOOAWNI T

ST cost: 99

Node numbers start at 0, not 1,
compared to first example




Better Prim algorithm

* In each node iteration in the standard version:

— We go through the arcs out of every visited node each time
anode is added to the tree, looking for the shortest arc
from any node

— This is alot of repetitive work: We look at each arc about
n/2 times to see if it's the shortest, and it almost never is

— Standard Prim is O(na), for number of nodes n and arcs a
* If we keep the arcs out of visited nodes in a heap, we can
just add arcs from a newly visited node to the heap, an
O(Ig n) operation, rather than the O(n) standard scan

— In each iteration we then delete the shortest arc from the
heap:
« If its destination has been visited, ignore it and delete the next
arc from the heap

* Otherwise, add the arc to the MST
e Thisis O(alg n), where ais the number of arcs
— Complexity proof easy except whether to use ‘Ilgn’ or ‘g &’
— Since ‘n’ and ‘a’ usually proportional, it's not a major issue
— Also, sorting to create the network takes O(a Ig a) steps

PrimHeap: arc class

public class MSTArc implements Comparable {

int from; // Package access
int to; // Package access
int dist; // Package access

public MSTArc(int f, Int t, int d) {
from= T;
to= t;
dist= d;
3
public String toString(Q {
return (" from: "+ from+ " to: '+ to + " dist: "+ dist);
3
public int compareTo(Object o) {
MSTArc other = (MSTArc) o;

if (dist > other.dist) // Ascending sort with
return -1; // max heap to get min arc
else if (dist < other.dist)
return 1;
else
return O;




PrimHeap: data members, constructor

public class PrimHeap { // Assumes connected graph; not checked
private int nodes; // Assumes consecutive node numbers
private int arcs;
private Int[] head;
private int[] to;
private int[] dist;
private boolean[] visited; // Has node been visited in Prim
private int MSTcost;
private Heap g;
private MSTArc[] inMST; // Arcs in MST

PrimHeap(int n, int a, int[] h, Iint[] t, int[] d) {

nodes = n;
arcs= a;
head = h;
to = t;
dist = d;

g= new Heap(arcs);
inMST= new MSTArc[nodes];

PrimHeap: prim()

public int prim(int root) {
visited = new boolean[nodes];
MSTArc inArc= null;
int k= 0; // Index of arcs in MST
visited[root] = true; // Initialize root node
for (int arc= head[root]; arc< head[root+l]; arc++)
g-insert(new MSTArc(root, to[arc], dist[arc])):

for (int i = 0; i < nodes-1; i++) { // Add (nhodes-1) arcs
do { // Find shortest arc to node not yet visited
inArc= (MSTArc) g.delete():;
} while (visited[inArc.to]):;
inMST[k++]= inArc;
int inNode= inArc.to;
visited[inNode] = true;
MSTcost += inArc.dist;
for (int arc= head[inNode]; arc< head[inNode+1]; arc++)
g-insert(new MSTArc(inNode, to[arc], dist[arc])):
} // 0Ca Ig n)
return MSTcost;




PrimHeap: print(), main()

public void printQ {
System.out.printIn(*“Arcs in MST');
for (int i = 0; i < nodes-1; i++) {
System.out._printIn(inMSTLi1);
}
System.out.printIn(""MST cost: " + MSTcost);
3

public static void main(String[] args) {
// Create test data (H&S p. 237)—see download
PrimHeap p = new PrimHeap(nodes, arcs, hh, tt, dd);
p-prim(root);
p-printQ;

Prim’s algorithm code, heap version, output

Arcs in MST

from: O to: 5 dist: 10
from: 5 to: 4 dist: 25
from: 4 to: 3 dist: 22
from: 3 to: 2 dist: 12
from: 2 to: 1 dist: 16
from: 1 to: 6 dist: 14
MST cost: 99

Node numbers start at 0, not 1,
compared to first example




Kruskal’'s algorithm

A different greedy method to build minimum spanning tree:

Tree T is empty;
Heap A contains all arcs, from lowest to highest cost
While (T has fewer than n-1 arcs) && (A has more arcs) {
Delete arc (v,w) from A
If arc (v,w) does not create a cycle in T
Add arc (v,w) to T
Else
Discard arc (v,w)

To detect cycles, we need to know if the origin and destination
nodes of the candidate entering arc are already connected

— Doing this efficiently is key to Kruskal’s algorithm

— We place connected nodes in the same Set

— The arcs will be a forest (set of disconnected subtrees) until the end
We place the arcs in a Heap

— We only need the minimum arc in each iteration, not a complete sort

Kruskal’'s algorithm example

® ®
®@ f@ 10 @
® ®@ ® ®© ® O ® @ ®
® 25
28 @@ ® 274
19 14X (@ (b) ©
@@ O
25 13/, 0 @

22(4) 1 f 10 f y
© © ® ©)
® 2 ® 12
@ @
() (©) ()

Stages in Kruskal's algorithm

Figure by MIT OpenCourseWare.




Kruskal: data members, constructor

public class Kruskal { // Assumes connected graph; not checked
private int nodes; // Assumes consecutive node numbers
private int arcs;
private MSTArc[] inMST; // Arcs in MST
private int MSTcost;
private Heap g;
private Set s;
Kruskal (int n, int a, MSTArc[] arcList) {
nodes = n;
arcs = a;
inMST= new MSTArc[nodes];
s= new Set(nodes);
g= new Heap(arcList);

Kruskal: kruskal()

public void kruskal(Q) {
int i= 0; // Index in InNMST array where arcs are placed
for (int arc= 0; arc < arcs; arc++) {
MSTArc d= (MSTArc) g-delete();
int j= s.collapsingFind(d-from);
int k= s.collapsingFind(d-to);
if@'=k){
inMSTLi++]= d;
MSTcost += d.dist;
s.weightedUnion(j, k);
3
if (i == nodes - 1)
break;

}

// print() and main() same as PrimHeap (except call kruskal() in main)
// MSTArc class same as in PrimHeap

// Once you’re comfortable with the MST codes, move them to Graph class
// KruskalAdjArray class in download uses adjacency array

10



Kruskal’'s algorithm code, output

Arcs in MST

from: 0 to: 5 dist: 10
from: 3 to: 2 dist: 12
from: 1 to: 6 dist: 14
from: 1 to: 2 dist: 16
from: 3 to: 4 dist: 22
from: 4 to: 5 dist: 25
MST cost: 99

Node numbers start at 0, not 1,

compared to first example

Improving Kruskal: Boruvka steps

(a) (b)

(c)
A Boruvka step

Figure by MIT OpenCourseWare.

11



Summary: Minimum spanning trees

Prim:
— Without heap: O(na), where n is number of nodes
— With heap: O(alg n), where a is number of arcs
Kruskal
— Standard: O(a lg n), where aiis number of arcs
— Randomized: O’(n + a), where O’ is ‘high probability’
running time of random element
» See text, p. 53-54
Prim with heap and standard Kruskal are usual
implementation choices
— Fast, straightforward
Add these to your Graph class if you wish
— Use symmetric directed graph in implementation
— Minor changes to constructor for add’l data members

12



MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

