
1.204 Lecture 11 

Greedy algorithms: 
Mi i tMinimum spanniing trees 

Minimum spanning tree 

•	 If G is an undirected, connected graph, a subgraph T of G is 
a spanning tree iff T is a tree with n nodes (or, equivalently, 
n-11 arcs)) 
–	 A minimum spanning tree is the spanning tree T of G with 

minimum arc costs 
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Applications of minimum spanning trees 

• Buildingg  wiring,g,  mechanicals 
• Water, power, gas, CATV, phone, road distribution networks 
• Copper (conventional) phone networks 

– MST algorithms not needed, done heuristically 
• Wireless telecom networks 

– Cell tower connectivity with microwave ‘circuits’ 
–	 Cost is not a function of distance, but reliability is


d t  th (i
– E tEast-west li  t linkks prefferred to northth  -south (ice, sun,…)) 
– Topography matters: DEM data 
– Move to fiber optics as better technology 
– Problem is to have a cost-effective, reliable network 

• Not to find the minimum spanning tree 

• System engineer looks at entire issue 
– MST is one component of a broader solution 

Prim’s algorithm 

• Greedyy method to build minimum sppanningg tree 
– Start at an arbitrary node (root) 
– The set of arcs selected always form a tree T 

• Initially the tree T is just the root. No arcs added to it yet. 
– The next arc (u,v) to be included in T is: 

• Minimum cost arc such that 
• Both nodes u and v are not in T already 

– Add arc (u,v) and node v to T 
• Mark node v as being in T, or visited (u is already in the tree) 
• 

– End when all nodes in tree have been visited, or 
• Equivalently, when (n-1) arcs have been put in the spanning tree 

{(u,v)} is now the new tree T ׫ T 
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Prim’s algorithm example 

Standard Prim: data members, constructor 

public class Prim { // Assumes connected graph; not checked 

private int nodes; // Assumes consecutive node numbers 

private int[] head; 

private int[] to; 

private int[] dist; 

private int[] P; // Predecessor node back to root 

private boolean[] visited; // Has node been visited 

private int MSTcost; 

Prim(int n  int[] h  int[] t  int[] d) { Prim(int n, int[] h, int[] t, int[] d) { 

nodes = n; // Or set nodes= head.length-1 

head = h; 

to = t; 

dist = d; 

} 
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Standard Prim: prim(), p.1 

public int prim(int root) { 

P = new int[nodes]; // Predecessor node in MST 

visited = new boolean[nodes]; // Has node been visited 

for (int i = 0; i < nodes; i++) { // Initialize 
P[i] = -1; // No predecessor on path 

} 

visited[root] = true; // Initialize root node 

// Continued on next slide 

Standard Prim: prim(), p.2 

for (int i = 0; i < nodes-1; i++) { // Add nodes-1 arcs 

int minDist = Integer.MAX_VALUE; 

int nextNode = -1; // Next node to be added to MST 

int pred = -1; // Predecessor of next node added to MST 

// Find node w/ min distance via arc from already visited set 

for (int node = 0; node < nodes; node++) { 

if (visited[node]) 

for (int arc = head[node]; arc < head[node + 1]; arc++) { 

int dest = to[arc]; 

if (!visited[dest] && dist[arc] < minDist) { 

minDist = dist[arc];

nextNode = dest;
nextNode = dest;

pred = node;


}

}


}

visited[nextNode] = true;

P[nextNode] = pred;

MSTcost += minDist; }


return MSTcost;} 
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Standard Prim: print(), main() 

public void print() { 

System.out.println("i \tP"); 

for (int i = 0; i < nodes; i++) { 

if (P[i] == -1) 

System.out.println(i + "\t-"); 

else 

System.out.println(i + "\t" + P[i]); 

} 

System.out.println("MST cost: " + MSTcost); 

}} 

public static void main(String[] args) { 

// Create test data (H&S p. 237—see download) 

Prim p = new Prim(nodes, hh, tt, dd); 

p.prim(root); 

p.print(); 

} 

Prim’s algorithm code, standard version, output 

i P 

0 -0 

1 2  

2 3  

3 4  

4 5  

5 0  

6 1  

MST cost: 99 

00 

5 

1 

6 2 

4 

3 

Node numbers start at 0, not 1, 
compared to first example 
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Better Prim algorithm 
•	 In each node iteration in the standard version: 

–	 We go through the arcs out of every visited node each time 
a node is added to the tree, looking for the shortest arc
from any node 

–	 ThiThis iis a llott off repetitititive workk: WWe llookk att eachh arc abboutt 
n/2 times to see if it’s the shortest, and it almost never is 

–	 Standard Prim is O(na), for number of nodes n and arcs a 
•	 If we keep the arcs out of visited nodes in a heap, we can 

just add arcs from a newly visited node to the heap, an 
O(lg n) operation, rather than the O(n) standard scan 
–	 In each iteration we then delete the shortest arc from the 

heap: 
•	 If it If its ddesti tinati tion hhas bbeen viisit itedd, iignore itit and d d dellette ththe nextt 

arc from the heap 
•	 Otherwise, add the arc to the MST 

•	 This is O(a lg n), where a is the number of arcs 
–	 Complexity proof easy except whether to use  ‘lg n’ or ‘lg a’ 
–	 Since ‘n’ and ‘a’ usually proportional, it’s not a major issue 
–	 Also, sorting to create the network takes O(a lg a) steps 

PrimHeap: arc class 
public class MSTArc implements Comparable { 

int from; // Package access 

int to; // Package access 

int dist; // Package access 

public MSTArc(int f, int t, int d) { 

from= f; 

to= t; 

dist= d; 

}

public String toString() {


return (" from: "+ from+ " to: "+ to + " dist: "+ dist); 

} 

public int compareTo(Object o) {public int compareTo(Object o) { 

MSTArc other = (MSTArc) o; 

if (dist > other.dist) // Ascending sort with 

return -1; // max heap to get min arc 

else if (dist < other.dist) 

return 1; 

else 

return 0; 

} } 
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PrimHeap: data members, constructor 

public class PrimHeap {   // Assumes connected graph; not checked 

private int nodes;     // Assumes consecutive node numbers 

private int arcs; 

private int[] head;private int[] head; 

private int[] to; 

private int[] dist; 

private boolean[] visited; // Has node been visited in Prim

private int MSTcost;

private Heap g;

private MSTArc[] inMST; // Arcs in MST


PrimHeap(int n, int a, int[] h, int[] t, int[] d) {

nodes = n; 

arcs= a; 

head = h; 

to = t; 

dist = d; 

g= new Heap(arcs); 

inMST= new MSTArc[nodes]; 

} 

PrimHeap: prim() 

public int prim(int root) { 

visited = new boolean[nodes]; 

MSTArc inArc= null; 

int k= 0; // Index of arcs in MST 

visited[root] = true; // Initialize root node 

for (int arc= head[root]; arc< head[root+1]; arc++) 

g.insert(new MSTArc(root, to[arc], dist[arc])); 

for (int i = 0; i < nodes-1; i++) { // Add (nodes-1) arcs 

do { // Find shortest arc to node not yet visited 

inArc= (MSTArc) g.delete();

} while (visited[inArc.to]);

inMST[k++]= inArc;
inMST[k++]= inArc;

int inNode= inArc.to;

visited[inNode] = true;

MSTcost += inArc.dist;

for (int arc= head[inNode]; arc< head[inNode+1]; arc++)

g.insert(new MSTArc(inNode, to[arc], dist[arc])); 

} // O(a lg n) 

return MSTcost; 

} 
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PrimHeap: print(), main() 

public void print() { 

System.out.println(“Arcs in MST"); 

for (int i = 0; i < nodes-1; i++) { 

System.out.println(inMST[i]); 

} 

System.out.println("MST cost: " + MSTcost); 

} 

public static void main(String[] args) { 

// Create test data (H&S p  237)—see download // Create test data (H&S p. 237) see download

PrimHeap p = new PrimHeap(nodes, arcs, hh, tt, dd);

p.prim(root);

p.print();


} 

Prim’s algorithm code, heap version, output 

Arcs in MST 

from: 0 to: 5 dist: 10 from: 0 to: 5 dist: 10 

from: 5 to: 4 dist: 25 

from: 4 to: 3 dist: 22 

from: 3 to: 2 dist: 12 

from: 2 to: 1 dist: 16 

from: 1 to: 6 dist: 14 

MST cost: 99 

00 

5 

1 

6 2 

4 

3 

Node numbers start at 0, not 1, 
compared to first example 
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Kruskal’s algorithm 

•	 A different greedy method to build minimum spanning tree: 

Tree T is empty;
Tree T is empty;

Heap A contains all arcs, from lowest to highest cost

While (T has fewer than n-1 arcs) && (A has more arcs) {


Delete arc (v,w) from A

If arc (v,w) does not create a cycle in T

Add arc (v,w) to T


Else

Discard arc (v,w)


•	 To detect cycles, we need to know if the origin and destination 
nodes of the candidate entering arc are already connected 
–	 Doing this efficiently is key to Kruskal’s algorithm 
–	 We place connected nodes in the same Set 
–	 The arcs will be a forest (set of disconnected subtrees) until the end 

•	 We place the arcs in a Heap 
–	 We only need the minimum arc in each iteration, not a complete sort 

Kruskal’s algorithm example 
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Kruskal: data members, constructor 

public class Kruskal { // Assumes connected graph; not checked 

private int nodes; // Assumes consecutive node numbers 

private int arcs;;p

private MSTArc[] inMST; // Arcs in MST

private int MSTcost;

private Heap g;

private Set s;


Kruskal(int n, int a, MSTArc[] arcList) {


nodes = n;

arcs = a;

inMST= new MSTArc[nodes];

s= new Set(nodes);

g= new Heap(arcList);


}


Kruskal: kruskal() 

public void kruskal() {

int i= 0;  // Index in inMST array where arcs are placed

for (int arc= 0; arc < arcs; arc++) {


MSTArc d= (MSTArc) g.delete(); 

int j= s.collapsingFind(d.from); 

int k= s.collapsingFind(d.to); 

if (j != k) { 

inMST[i++]= d; 

MSTcost += d.dist; 

s.weightedUnion(j, k); 

}

if (i == nodes - 1)
if (i =  nodes 1)


break;

}


}


// print() and main() same as PrimHeap (except call kruskal() in main) 

// MSTArc class same as in PrimHeap 

// Once you’re comfortable with the MST codes, move them to Graph class 

// KruskalAdjArray class in download uses adjacency array 
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Kruskal’s algorithm code, output 

Arcs in MST

from: 0 to: 5 dist: 10
from: 0 to: 5 dist: 10

from: 3 to: 2 dist: 12

from: 1 to: 6 dist: 14

from: 1 to: 2 dist: 16

from: 3 to: 4 dist: 22

from: 4 to: 5 dist: 25

MST cost: 99


00 

5 

1 

6 2 

4 

3 

Node numbers start at 0, not 1, 
compared to first example 

Improving Kruskal: Boruvka steps 
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Summary: Minimum spanning trees 

•	 Prim: 
– Without heap: O(na) where n is number of nodes Without heap: O(na), where n is number of nodes 
– With heap: O(a lg n), where a is number of arcs 

•	 Kruskal 
–	 Standard: O(a lg n), where a is number of arcs 
–	 Randomized: O’(n + a), where O’ is ‘high probability’

running time of random element 
• See text, p. 53-54 

•• Prim with heap and standard Kruskal are usual Prim with heap and standard Kruskal are usual 
implementation choices 
–	 Fast, straightforward 

•	 Add these to your Graph class if you wish 
–	 Use symmetric directed graph in implementation 
–	 Minor changes to constructor for add’l data members 
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