
1.204 Lecture 11

Greedy algorithms:
Mi i tMinimum spanniing trees

Minimum spanning tree

•	 If G is an undirected, connected graph, a subgraph T of G is
a spanning tree iff T is a tree with n nodes (or, equivalently,
n-11 arcs))
–	 A minimum spanning tree is the spanning tree T of G with

minimum arc costs

1

1

6

5

4

7

2

3376

5

4

10

25

22

24

14

28

16

18 12 25

22

12

1614
10

 A graph and its minimum cost spanning tree

(a) (b)

1

2

Figure by MIT OpenCourseWare.

Applications of minimum spanning trees

• Buildingg wiring,g, mechanicals
• Water, power, gas, CATV, phone, road distribution networks
• Copper (conventional) phone networks

– MST algorithms not needed, done heuristically
• Wireless telecom networks

– Cell tower connectivity with microwave ‘circuits’
–	 Cost is not a function of distance, but reliability is

d t th (i
– E tEast-west li t linkks prefferred to northth -south (ice, sun,…))
– Topography matters: DEM data
– Move to fiber optics as better technology
– Problem is to have a cost-effective, reliable network

• Not to find the minimum spanning tree

• System engineer looks at entire issue
– MST is one component of a broader solution

Prim’s algorithm

• Greedyy method to build minimum sppanningg tree
– Start at an arbitrary node (root)
– The set of arcs selected always form a tree T

• Initially the tree T is just the root. No arcs added to it yet.
– The next arc (u,v) to be included in T is:

• Minimum cost arc such that
• Both nodes u and v are not in T already

– Add arc (u,v) and node v to T
• Mark node v as being in T, or visited (u is already in the tree)
•

– End when all nodes in tree have been visited, or
• Equivalently, when (n-1) arcs have been put in the spanning tree

{(u,v)} is now the new tree T ׫ T

2

Prim’s algorithm example

Standard Prim: data members, constructor

public class Prim { // Assumes connected graph; not checked

private int nodes; // Assumes consecutive node numbers

private int[] head;

private int[] to;

private int[] dist;

private int[] P; // Predecessor node back to root

private boolean[] visited; // Has node been visited

private int MSTcost;

Prim(int n int[] h int[] t int[] d) { Prim(int n, int[] h, int[] t, int[] d) {

nodes = n; // Or set nodes= head.length-1

head = h;

to = t;

dist = d;

}

3

1

10

10

25
24

22

18

10

25

22

12

10 10

25 25

22 22

12 12

16 14 16

14

12

16

28

10

25 25

22

10

1

6

5
4

7 3 6

1
2

5
4

376

1

1 1 1

2

2 2 2

3

3 3 3

7

7

5 5

7 7

6

6 6 6

5

5

4

4 4 4

7

5
4

2

3

2

Stages in Prim's Algorithm

(a) (b) (c)

(f)(e)(d)

Figure by MIT OpenCourseWare.

Standard Prim: prim(), p.1

public int prim(int root) {

P = new int[nodes]; // Predecessor node in MST

visited = new boolean[nodes]; // Has node been visited

for (int i = 0; i < nodes; i++) { // Initialize
P[i] = -1; // No predecessor on path

}

visited[root] = true; // Initialize root node

// Continued on next slide

Standard Prim: prim(), p.2

for (int i = 0; i < nodes-1; i++) { // Add nodes-1 arcs

int minDist = Integer.MAX_VALUE;

int nextNode = -1; // Next node to be added to MST

int pred = -1; // Predecessor of next node added to MST

// Find node w/ min distance via arc from already visited set

for (int node = 0; node < nodes; node++) {

if (visited[node])

for (int arc = head[node]; arc < head[node + 1]; arc++) {

int dest = to[arc];

if (!visited[dest] && dist[arc] < minDist) {

minDist = dist[arc];

nextNode = dest;
nextNode = dest;

pred = node;

}

}

}

visited[nextNode] = true;

P[nextNode] = pred;

MSTcost += minDist; }

return MSTcost;}

4

Standard Prim: print(), main()

public void print() {

System.out.println("i \tP");

for (int i = 0; i < nodes; i++) {

if (P[i] == -1)

System.out.println(i + "\t-");

else

System.out.println(i + "\t" + P[i]);

}

System.out.println("MST cost: " + MSTcost);

}}

public static void main(String[] args) {

// Create test data (H&S p. 237—see download)

Prim p = new Prim(nodes, hh, tt, dd);

p.prim(root);

p.print();

}

Prim’s algorithm code, standard version, output

i P

0 -0

1 2

2 3

3 4

4 5

5 0

6 1

MST cost: 99

00

5

1

6 2

4

3

Node numbers start at 0, not 1,
compared to first example

5

Better Prim algorithm
•	 In each node iteration in the standard version:

–	 We go through the arcs out of every visited node each time
a node is added to the tree, looking for the shortest arc
from any node

–	 ThiThis iis a llott off repetitititive workk: WWe llookk att eachh arc abboutt
n/2 times to see if it’s the shortest, and it almost never is

–	 Standard Prim is O(na), for number of nodes n and arcs a
•	 If we keep the arcs out of visited nodes in a heap, we can

just add arcs from a newly visited node to the heap, an
O(lg n) operation, rather than the O(n) standard scan
–	 In each iteration we then delete the shortest arc from the

heap:
•	 If it If its ddesti tinati tion hhas bbeen viisit itedd, iignore itit and d d dellette ththe nextt

arc from the heap
•	 Otherwise, add the arc to the MST

•	 This is O(a lg n), where a is the number of arcs
–	 Complexity proof easy except whether to use ‘lg n’ or ‘lg a’
–	 Since ‘n’ and ‘a’ usually proportional, it’s not a major issue
–	 Also, sorting to create the network takes O(a lg a) steps

PrimHeap: arc class
public class MSTArc implements Comparable {

int from; // Package access

int to; // Package access

int dist; // Package access

public MSTArc(int f, int t, int d) {

from= f;

to= t;

dist= d;

}

public String toString() {

return (" from: "+ from+ " to: "+ to + " dist: "+ dist);

}

public int compareTo(Object o) {public int compareTo(Object o) {

MSTArc other = (MSTArc) o;

if (dist > other.dist) // Ascending sort with

return -1; // max heap to get min arc

else if (dist < other.dist)

return 1;

else

return 0;

} }

6

d

PrimHeap: data members, constructor

public class PrimHeap { // Assumes connected graph; not checked

private int nodes; // Assumes consecutive node numbers

private int arcs;

private int[] head;private int[] head;

private int[] to;

private int[] dist;

private boolean[] visited; // Has node been visited in Prim

private int MSTcost;

private Heap g;

private MSTArc[] inMST; // Arcs in MST

PrimHeap(int n, int a, int[] h, int[] t, int[] d) {

nodes = n;

arcs= a;

head = h;

to = t;

dist = d;

g= new Heap(arcs);

inMST= new MSTArc[nodes];

}

PrimHeap: prim()

public int prim(int root) {

visited = new boolean[nodes];

MSTArc inArc= null;

int k= 0; // Index of arcs in MST

visited[root] = true; // Initialize root node

for (int arc= head[root]; arc< head[root+1]; arc++)

g.insert(new MSTArc(root, to[arc], dist[arc]));

for (int i = 0; i < nodes-1; i++) { // Add (nodes-1) arcs

do { // Find shortest arc to node not yet visited

inArc= (MSTArc) g.delete();

} while (visited[inArc.to]);

inMST[k++]= inArc;
inMST[k++]= inArc;

int inNode= inArc.to;

visited[inNode] = true;

MSTcost += inArc.dist;

for (int arc= head[inNode]; arc< head[inNode+1]; arc++)

g.insert(new MSTArc(inNode, to[arc], dist[arc]));

} // O(a lg n)

return MSTcost;

}

7

PrimHeap: print(), main()

public void print() {

System.out.println(“Arcs in MST");

for (int i = 0; i < nodes-1; i++) {

System.out.println(inMST[i]);

}

System.out.println("MST cost: " + MSTcost);

}

public static void main(String[] args) {

// Create test data (H&S p 237)—see download // Create test data (H&S p. 237) see download

PrimHeap p = new PrimHeap(nodes, arcs, hh, tt, dd);

p.prim(root);

p.print();

}

Prim’s algorithm code, heap version, output

Arcs in MST

from: 0 to: 5 dist: 10 from: 0 to: 5 dist: 10

from: 5 to: 4 dist: 25

from: 4 to: 3 dist: 22

from: 3 to: 2 dist: 12

from: 2 to: 1 dist: 16

from: 1 to: 6 dist: 14

MST cost: 99

00

5

1

6 2

4

3

Node numbers start at 0, not 1,
compared to first example

8

Kruskal’s algorithm

•	 A different greedy method to build minimum spanning tree:

Tree T is empty;
Tree T is empty;

Heap A contains all arcs, from lowest to highest cost

While (T has fewer than n-1 arcs) && (A has more arcs) {

Delete arc (v,w) from A

If arc (v,w) does not create a cycle in T

Add arc (v,w) to T

Else

Discard arc (v,w)

•	 To detect cycles, we need to know if the origin and destination
nodes of the candidate entering arc are already connected
–	 Doing this efficiently is key to Kruskal’s algorithm
–	 We place connected nodes in the same Set
–	 The arcs will be a forest (set of disconnected subtrees) until the end

•	 We place the arcs in a Heap
–	 We only need the minimum arc in each iteration, not a complete sort

Kruskal’s algorithm example

9

1

10

25
24

22

18

10

12

14 1410 10

22

12 12

16 14 16

14

12

16

28

10

25

22

10

1

6

5
4

7 3 6

1
2

5
4

376

1

1 1 1

2

2 2 2

3

3 3 3

7

7

5 5

7 7

6

6 6 6

5

5

4

4 4 4

7

5
4

2

3

2

Stages in Kruskal's algorithm

(a) (b) (c)

(f)(e)(d)

Figure by MIT OpenCourseWare.

=

Kruskal: data members, constructor

public class Kruskal { // Assumes connected graph; not checked

private int nodes; // Assumes consecutive node numbers

private int arcs;;p

private MSTArc[] inMST; // Arcs in MST

private int MSTcost;

private Heap g;

private Set s;

Kruskal(int n, int a, MSTArc[] arcList) {

nodes = n;

arcs = a;

inMST= new MSTArc[nodes];

s= new Set(nodes);

g= new Heap(arcList);

}

Kruskal: kruskal()

public void kruskal() {

int i= 0; // Index in inMST array where arcs are placed

for (int arc= 0; arc < arcs; arc++) {

MSTArc d= (MSTArc) g.delete();

int j= s.collapsingFind(d.from);

int k= s.collapsingFind(d.to);

if (j != k) {

inMST[i++]= d;

MSTcost += d.dist;

s.weightedUnion(j, k);

}

if (i == nodes - 1)
if (i = nodes 1)

break;

}

}

// print() and main() same as PrimHeap (except call kruskal() in main)

// MSTArc class same as in PrimHeap

// Once you’re comfortable with the MST codes, move them to Graph class

// KruskalAdjArray class in download uses adjacency array

10

Kruskal’s algorithm code, output

Arcs in MST

from: 0 to: 5 dist: 10
from: 0 to: 5 dist: 10

from: 3 to: 2 dist: 12

from: 1 to: 6 dist: 14

from: 1 to: 2 dist: 16

from: 3 to: 4 dist: 22

from: 4 to: 5 dist: 25

MST cost: 99

00

5

1

6 2

4

3

Node numbers start at 0, not 1,
compared to first example

Improving Kruskal: Boruvka steps

11

1

3

5

4

6

8

8

6

2
11

9
7 c

b

a
2

3

4

a

8

8

8
6

6

6

9

9

11
b

c

c

b

a

5

6

7

(a) (b)

(c)

A Boruvka step

Figure by MIT OpenCourseWare.

Summary: Minimum spanning trees

•	 Prim:
– Without heap: O(na) where n is number of nodes Without heap: O(na), where n is number of nodes
– With heap: O(a lg n), where a is number of arcs

•	 Kruskal
–	 Standard: O(a lg n), where a is number of arcs
–	 Randomized: O’(n + a), where O’ is ‘high probability’

running time of random element
• See text, p. 53-54

•• Prim with heap and standard Kruskal are usual Prim with heap and standard Kruskal are usual
implementation choices
–	 Fast, straightforward

•	 Add these to your Graph class if you wish
–	 Use symmetric directed graph in implementation
–	 Minor changes to constructor for add’l data members

12

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

