1.204 Lecture 10

Greedy algorithms:
Knapsack (capital budgeting)
Job scheduling

Greedy method

Local improvement method
Does not look at problem globally
— Takes best immediate step to find a solution
— Useful in many cases where
* Objectives or constraints are uncertain, or
* An approximate answer is all that’s required

— Generally O(n) complexity, easy to implement and interpret

results
» Often requires sorting the data first, which is O(n Ig n)

— In some cases, greedy algorithms provide optimal solutions
(shortest paths, spanning trees, some job scheduling
problems)

* In most cases they are approximate algorithms

* Sometimes used as a part of an exact algorithm (e.g., as a
relaxation in an integer programming algorithm)

General greedy algorithm

// Pseudocode
public solution greedy(problem) {
solution= empty set;
problem.sortQ; // Usually place elements in order
for (element: problem) {
if (element feasible and appears optimal)
solution= union(solution, element);
return solution;

}

Some greedy algorithms sort, some use a heap, some don’t need
to sort at all.

Greedy knapsack problem

We have n objects, each with weight w; and profit p;.
The knapsack has capacity M.

max > pX

0<i<n

s.t.
D wix <M

0<i<n

0<x <=1
p,>20,w, >0,0<i<n

Greedy knapsack algorithm

Prodix P

=

Algorithm chooses element with highest value/weight
ratio first, the next highest second, and so on until it
reaches the capacity of the knapsack.

This is the same as a gradient or derivative method.

Knapsack: integer or not?

element weight profit
1 .51 8
2 .5 6
3 .5 3
prof+ ,-,1*
14 1
|
8 :
| .
Sl Mol LSt (wn‘rskt
Let M= 1.

Integer solution is {2, 3}, an unexpected result in some contexts.
Greedy solution is {1, 98% of 2}.

If problem has hard constraints, need integer solution.

If constraints are fuzzy, greedy solution may be better.

Knapsack problems

* Truck packing: integer knapsack
— Packing problem in 2 and 3 dimensions is extension
¢ Investment program:
— Greedy knapsack at high level
— Can be integer knapsack at individual transaction level

— (Highway investment or telecom capital investment programs

often handled as integer problem, with occasionally hard-to-
interpret results)

Used to train telecom execs for spectrum auction
¢ Interactions between projects:

— Greedy can be extended to handle interactions between small
numbers of projects (that can be enumerated)

— Integer program handles this explicitly

Greedy knapsack code, p.1

public class Knapsack {
private static class Item implements Comparable {
public double ratio; // Profit/weight ratio
public int weight;
public Item(double r, int w) {
ratio = r;
weight = w;

public int compareTo(Object o) {

Item other = (ltem) o;

if (ratio > other.ratio) // Descending sort
return -1;

else if (ratio < other.ratio)
return 1;

else
return O;

Greedy knapsack code, p.2

public static double[] knapsack(ltem[] e, int m) {
int upper = m; // Knapsack capacity
// 0-1 answer array: 1 if item in knapsack, O if not
double[] x= new double[e.length];
int i;
for (i= 0; i < e.length; i++) {
if (e[i]-weight > upper)

break;
x[i]= 1.0;
upper -= e[i]-weight;
3
if (i < e.length) // 1T all items not in knapsack
x[i]= (double) upper/ e[i]-weight; // Fractional item
return X;

Greedy knapsack code, p.3

public static void main(String[] args) {

Item a = new 1tem(2.0, 2);

Item b = new Item(1.5, 4);

Item ¢ = new Item(2.5, 2);

Item d = new 1tem(1.66667, 3):

Item[] e ={ a, b, c, d};

Arrays.sort(e);

intm=7;

System.out.printin("Capacity: " + m);

double[] projectSet= knapsack(e, m);

double cumProfit= 0.0;

for (int i= 0; i < e.length; i++) {
System.out.printin(..); // See Java code
cumProfit+= projectSet[i]*e[i]-weight*e[i].ratio;

}

System.out.printin(*"Cumulative benefit: " + cumProfit);

Greedy knapsack output

Capacity: 7

ratio: 2.5 wgt: 2 profit: 5.0 in? 1.0
ratio: 2.0 wgt: 2 profit: 4.0 in? 1.0
ratio: 1.67 wgt: 3 profit: 5.0 in? 1.0
ratio: 1.5 wgt: 4 profit: 6.0 in? 0.0

Cumulative benefit: 14.0

(Roundoff errors omitted)

This greedy example yields an integer solution. Most don”t:
Run knapsack() with m= 6 or 8 or ..

Greedy job scheduling

We have a set of n jobs to run on a processor (CPU) or machine
Each job i has a deadline d;>=1 and profit p; >=0

There is one processor or machine

Each job takes 1 unit of time (simplification)

We earn the profit if and only if the job is completed by its deadline

— “Profit” can be the priority of the task in a real time system that discards
tasks that cannot be completed by their deadline

We want to find the subset of jobs that maximizes our profit

This is a restricted version of a general job scheduling problem, which
is an integer programming problem

— Example use in telecom engineering and construction scheduling

— Many small jobs, “profit” proportional to customers served

— This is then combined with integer programming solution for big jobs
Greedy also used in how many machines/people problems (hw 1)

— Buy versus contract

Greedy job scheduling example

Number of jobs n=5. Time slots 1, 2, 3. (Slot 0 is sentinel)

Job (i) Profit Deadline Profit/Time
A 100 2 100

B 19 1 19

C 27 2 27

D 25 1 25

E 15 3 15

Greedy job scheduling algorithm

< Sort jobs by profit/time ratio (slope or derivative):
— A (deadline 2), C (2), D (1), B (1), E (3)
* Place each job at latest time that meets its deadline

— Nothing is gained by scheduling it earlier, and scheduling it
earlier could prevent another more profitable job from being
done

— Solution is {C, A, E} with profit of 142

C (27)
/ A(100) E(15)
0 1 2 3
Time D, B infeasible

— This can be subproblem: how many machines/people needed

Greedy job data structure

» Simple greedy job algorithm spends much time
looking for latest slot a job can use, especially as
algorithm progresses and many slots are filled.

— n jobs would, on average, search n/2 slots
— This would be an O(n?) algorithm

* By using our set data structure, it becomes
nearly O(n)

— Recall set find and union are O(Ackermann’s function),
which is nearly O(1)

— We invoke n set finds and unions in our greedy
algorithm

Simple job scheduling: O(n?)

public static int[] simpleJobSched(ltem[] jobs) {

int n= jobs.length;

int[] jobSet= new int[n];

boolean[] slot= new boolean[n];

for (int i= 1; i < n; i+H) {

for (int j= jobs[i].deadline; j > 0; j—) {
if (UslotjD {

slot[j]= true;
jobSet[j]= i:
break;

}
}

return jobSet;

Fast job scheduling (almost O(n))

* We use i to denote time slot i
— At the start of the method, each time slot i is its own set
* There are b time slots, where b= min{n, max(d,)}
— Usually b= max(d;), the latest deadline
« Each set k of slots has a value F(k) for all slots i in set
k
— This stores the highest free slot before this time
— F(k) is defined only for root nodes in sets

Job scheduling algorithm

« Initially all slots are free
— We have b+1 sets corresponding to b+1 time slotsi,0<i<b
— Slot 0 is a sentinel
— Initially F(i)=i for all i
¢ We will use parent pli] to link slot i into its set
— Initially p[i]= -1 for all i
— Parent of root is negative of number of nodes in set
* To schedule job i with deadline d;:
— “Find” root of tree containing slot min(n, d;)
» Usually this is just slot d;
— Ifroot of i’s set is j, then F(j) is latest free slot, provided F(j) # 0

< After using slot F(j), we combine (“set union”) set having
root j with set having slot F(j) -1

Job scheduling example

Free Free

\ { / F(j), j is root

X X X | x| x| x x= used

,,,,, | =]

d_i i i iranynode

All in same set can be root of set

Job scheduling algorithm operation

4 F o4 i 2 2 job contidered cebin
¢ D &D €& & |, d=2 ekesirz

PC) PC1) PL2) PL2)

-] ! =

F
{!.) - - F)=l
3 PLI) @ Z) dz_ = tokeslot |
Pl
F @ 2
Ly =3 ED 3, da= | =(1)=¢
i) Feject job
o v,
1) pLL)
3 IOR)
2) =)
{12 /é-?\ @ 4,04=] rejectjob
o @
BL pL2)
4

- L ds=3 FE)=3
{1,253 m e blesi+3

og) ecz) PL2)

10

Job sequence code, p.1

public class JobSeqFast {
private static class Item implements Comparable {

private int profit;

private int deadline;

private String name;

public Item(int p, int d, String n) {
profit= p;
deadline= d;
name= n;

public int compareTo(Object 0) {

Item other = (ltem) o;

if (profit > other.profit) // Descending sort
return -1;

else if (profit < other.profit)
return 1;

else
return O;

3
3} // Add getXXX() and setXXX() methods for completeness

Job sequence code, p.2

public static int[] fjs(ltem[] jobs, int b) {
int n= jobs.length;
int[] j= new int[n]; // Profit max jobs, in time order
Set jobSet = new Set(b):;
int[] ¥ = new int[b]; // Highest free slot, job due at i
for (int 1 = 0; 1 < b; i+
f[i] = 1; // Sentinel at jobs[O]

for (int 1 = 1; 1 < n; i++) { // Jobs in profit order
int g = jobSet.collapsingFind(Math.min(n, jobs[i].deadline));
if (f[q] '=0) { // 1T free slot exists
ia]l = i; // Add job in that slot
int m = jobSet.collapsingFind(f[q] - 1); /7 Find earlier slot
jobSet._.weightedUnion(m, q); /7 Unite sets

f[q] = f[m]; // In case g is root, not m
}
}
return j; // Jobs in optimal set
} // More comments in download code

11

Job sequence code, p.3

public static void main(String args[]) {
Item sentinel= new Item(0, 0,”s™);// Don’t sort-leave in place
Item a = new Item(100, 2, “a”); // Also create b, c, d, e
Item[] jobs = { sentinel, a, b, c, d, e };
Arrays.sort(jobs, 1, jobs.length-1); // Sort descending
int maxD= -1; // Maximum deadline
for (Item i: jobs)
if (i.deadline > maxD)
maxD= i.deadline;
maxD++;
int bb= Math.min(maxD, jobs.length);
int[] j= fjs(obs, bb);
System.out.printIn(*'Jobs done:");
for (int i= 1; i < maxD; i++) {
if (4Li1>0) {
System.out._printin(** Job "+ jobs[j[i]]-name +
" at time "+ i);
} // And compute and output total jobs, total profit

Job sequence example output

Jobs done:

Job c at time 1

Job a at time 2

Job e at time 3

Number of jobs done: 3, total profit: 142

12

Summary

This job scheduling special case solvable with greedy
algorithm

— We revisit more general version with dynamic programming
Capital planning problems often solvable with greedy
algorithm
Other greedy algorithms
Spanning trees (next time)
Shortest paths (in two lectures)
Other job scheduling problems (e.g. min time schedule)
Graph coloring heuristic
Traveling salesperson heuristic (2-opt, 3-opt)

» Used as part of simulated annealing
Greedy algorithms are fast and relatively simple

— Consider them as parts of more complex solutions, or

— As approximate solutions

13

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

