
1.204 Lecture 5

Algorithms: analysis, complexity

Algorithms

•	 Alggorithm:
–	 Finite set of instructions that solves a given problem.
–	 Characteristics:

•	 Input. Zero or more quantities are supplied.
•	 Output. At least one quantity is computed.
•	 Definiteness. Each instruction is computable.
•	 Finiteness. The algorithm terminates with the answer or by telling

us no answer exists.
•	 We will study common algorithms in engineering design

d d i kiand decisiion-making
–	 We focus on problem modeling and algorithm usage
–	 Variations in problem formulation lead to greatly different

algorithms
•	 E.g., capital budgeting can be greedy (simple) or mixed integer

programming (complex)

1

t t t

t

Algorithms: forms of analysis

•	 How to devise an alggorithm
•	 How to validate the algorithm is correct

–	 Correctness proofs
•	 How to analyze running time and space of algorithm

–	 Complexity analysis: asymptotic, empirical, others
•	 How to choose or modify an algorithm to solve a problem
•	 How to implement and test an algorithm in a program

–	 KKeep program codde shhort andd correspondd clloselly to allgorithi hm
steps

Analysis of algorithms

•	 Time compplexityy of a ggiven alggorithm
–	 How does time depend on problem size?
–	 Does time depend on problem instance or details?
–	 Is this the fastest algorithm?
–	 How much does speed matter for this problem?

•	 Space complexity
–	 How much memory is required for a given problem size?

•	 Assumptions on computer word size, processor
–	 Fi d d/ i iFixed word/register size
–	 Single or multi (grid, hypercube) processor

•	 Solution quality
–	 Exact or approximate/bounded
–	 Guaranteed optimal or heuristic

2

Methods of complexity analysis

•	 Asymptotic analysis
–	 Create recurrence relation and solve

•	 This relates problem size of original problem to number and size of
sub-problems solved

–	 Different performance measures are of interest
•	 Worst case (often easiest to analyze; need one ‘bad’ example)
•	 Best case (often easy for same reason)
•	 Data-specific case (usually difficult, but most useful)

•	 Write implementation of algorithm (on paper)
–	 Create table (on paper) of frequency and cost of steps
–	 Sum upp the stepps;; relate them to pproblem size

•	 Implement algorithm in Java
–	 Count steps executed with counter variables, or use timer
–	 Vary problem size and analyze the performance

•	 These methods are all used
–	 They vary in accuracy, generality, usefulness and ‘correctness’
–	 Similar approaches for probabilistic algorithms, parallel, etc.

Asymptotic notation: upper bound O(..)

•	 f(n)= O(g((g()) n)) if and only if() 	 y
–	 f(n) ≤ c * g(n)
–	 where c > 0
–	 for all n > n0

•	 Example:
–	 f(n)= 6n + 4√n
–	 g(n)= n
–	 c= 10 (not unique)
–	 f(f(n))= c ** g((n)) whhen n= 11 0

–	 f(n) < g(n) when n > 1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

n

–	 Thus, f(n)= O(n)

•	 O(..) is worst case (upper bound) notation for an algorithm’s
complexity (running time)

5

10

15

20

25

30

35

40

45

f(n)
c*g(n)

3

Asymptotic notation: lower bound Ω(..)

•	 f(n)= Ω(g((g(n)) if and onlyy if()))
–	 f(n) ≥ c * g(n)
–	 where c > 0
–	 for all n > n0

•	 Example:
–	 f(n)= 6n + 4√n
–	 g(n)= n
–	 c= 6 (again, not unique)
–	 f(f(n))= c ** g((n)) whhen n= 00
–	 f(n) > g(n) when n > 0 n

–	 Thus, f(n)= Ω(n)

•	 Ω(..) is best case (lower bound) notation for an algorithm’s
complexity (running time)

5

10

15

20

25

30

35

f(n)
c*g(n)

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Asymptotic notation

•	 Worst case or upper bound: O(..)Worst case or upper bound: O(..)
–	 f(n)= O(g(n)) if f(n) ≤ c* g(n)

•	 Best case or lower bound: Ω(..)
–	 f(n)= Ω(g(n)) if f(n) ≥ c* g(n)

•	 Composite bound: Θ(..)
–	 f(n)= Θ(g(n)) if c1* g(n) ≤ f(n) ≤ c2* g(n)

• AAverage or ttypiicall case nottatiti on iis lless fformall
–	 We generally say “average case is O(n)”, for example

4

5

Example performance of some common
algorithms

Algorithm Worst case Typical case
Simple greedy O(n) O(n)
Sorting O(n2) O(n lg n)
Shortest paths O(2n) O(n)
Linear programming O(2n) O(n)
Dynamic programming O(2n) O(2n)Dynamic programming O(2) O(2)
Branch-and-bound O(2n) O(2n)

Linear programming simplex is O(2n), though these cases are pathological
Linear programming interior point is O(Ln3.5), where L= bits in coefficients
Shortest path label correcting algorithm is O(2n), though these cases are pathological
Shortest path label setting algorithm is O(a lg n), where a= number of arcs. Slow in practice.

Running times on 1 GHz computer

O() O(l) O(n2) O(n3) O(n10) O(2n)n O(n) O(n lg n) O(n) O(n) O(n) O(2)
10 .01 μs .03 μs .10 μs 1 μs 10 s 1 μs
50 .05 μs .28 μs 2.5 μs 125 μs 3.1 y 13 d

100 .10 μs .66 μs 10 μs 1 ms 3171 y 1013 y
1,000 1 μs 10 μs 1 ms 1 s 1013 y 10283 y

10,000 10 μs 130 μs 100 ms 16.7 min 1023 y
100 000 100 μs 1 7 ms 10 s 11 6 d 1033 y100,000 100 μs 1.7 ms 10 s 11.6 d 10 y

1,000,000 1 ms 20 ms 16.7 min 31.7 y 1043 y

Assumes one clock step per operation, which is optimistic

co

=

Complexity analysis: recursive sum

public class SumCountRec {
static int count;

public static double rSum(double[] a, int n) {

unt++;
count++;

if (n <= 0) {

count++;

return 0.0;

}
else {

count++;
return rSum(a, n-1) + a[n-1];

}

}
}

public static void main(String[] args) {
count = 0;
double[] a = { 1, 2, 3, 4, 5};
System.out.println("Sum is " + rSum(a, a.length));
System.out.println("Count is " + count);

}
} // We can convert any iterative program to recursive

Complexity analysis: recurrence relations

•	 For recursive sum:
–	 T(n)= 2 if n= 0
–	 T(n)= 2 + T(n-1) if n> 0

•	 To solve for T(n)
–	 T(n)= 2 + T(n-1)

= 2 + 2 + T(n-2)

= 2*2 + T(n-2)

= n*2 + T(0)
n 2 + T(0)

= 2n + 2

Thus, T(n) = Θ(n)

•	 Solving recurrence relations is a typical way to obtain

asymptotic complexity results for algorithms
–	 There is a master method that offers a cookbook approach to

recurrence

6

1
32

0

1

54 76 2

...

• Max nodes on level i= 2i

• Max nodes in tree of depth k= 2k+1-1

Binary tree: O(lg n)
Level

• This is full tree of deppth k
• Each item in left subtree is smaller than parent
• Each item in right subtree is larger than parent
• It thus takes one step per level to search for an item
• In a tree of n nodes, how may steps does it take to find an item?

• Answer: O (lg n)
• Approximately 2k nodes in k levels

• Remember that logarithmic is the “inverse” of exponential

Quicksort: O (n lg n)

Quicksort(aQuicksort(a, 00, 6)
6)
Original 36 71 46 76 41 61 56

i i j j pivot
1st swap 36 41 46 76

j
71 61 56

i i j
2nd swap 36 41 46 56 71 61 76

quicksort(a,0,2) quicksort(a,4,6)
final position

7

d bl [][] d bl [][]

Complexity analysis: count steps on paper
public class MatrixCount {

static int count;

public static double[][] add(double[][] a, double[][] b) {
int m= a.length;
int n= a[0].length;
double[][] c = new double[m][n];
for (int i = 0; i < m; i++) {

count++; //`for i‘: Θ(m)
for (int j = 0; j < n; j++) {

count++; //`for j‘: Θ(mn)
c[i][j] = a[i][j] + b[i][j];
count++; // assgt : Θ(mn)

}
count++; // loop init: Θ(1)

}}
count++; // loop init: Θ(1)
return c;

} // Total(max): Θ(mn)
public static void main(String[] args) {

count = 0;
double[][] a = { {1, 2}, {3, 4} };
double[][] b = { {1, 2}, {3, 4} };
double[][] c = add(a, b);
System.out.println("Count is: "+ count); } }

Complexity: exponentiation, steps on paper
public class Expon {

public static int count;
public static long exponentiate(long x, long n) {

count= 0;
long answer = 1;
while (n > 0) {while (n > 0) {
while (n % 2 == 0) {
n /= 2; // Since n is halved,
x *= x; // loop called Θ(log n) times
count++;

}
n--; // Executed at most once per loop
answer *= x;
count++;

}
return answer;

}

public static void main(String[] args) {
long myX = 5;
for (long myN= 1; myN <= 25; myN++) {
System.out.println(exponentiate(myX, myN)+ “ “+ count);

}
}

8

i i

Timing: sequential search

public class SimpleSearch {
public static int seqSearch(int[] a, int x, int n) {

int i= n;

a[0] = x;

while (a[i] != x)

i--;

return i;

}

public static void main(String[] args) {
// Slot 0 is a placeholder; search value copied there
int[] a = {0 int[] a = {0, 11, 22, 33, 44, 55, 6, 77, 88, 99, 10}; 6 10};
System.out.println("SeqSearch location is " +

seqSearch(a, 7, a.length-1));
System.out.println("SeqSearch location is " +

seqSearch(a, 11, a.length-1));
}

} // This algorithm is O(n): avg n/2 for steps successful
// search, and n steps for unsuccessful search

Java timing

•	 Java has method System.nanoTime(). This is the Java has method System.nanoTime(). This is the
best we can do. From Javadoc:
–	 This method can only be used to measure elapsed time

and is not related to any other notion of system or wall-
clock time.

–	 The value returned represents nanoseconds since some
fixed but arbitrary time (perhaps in the future, so values
may be negative)may be negative).

–	 This method provides nanosecond precision, but not
necessarily nanosecond accuracy.

–	 No guarantees are made about how frequently values
change.

9

A poor timing program
public class SearchTime1 {

public static void timeSearch() {

int a[] = new int[1001];

int n[] = new int[21];

for (int j = 1; j <= 1000; j++)

[j] ja[j] = j;
for (int j = 1; j <= 10; j++) {

n[j] = 10 * (j - 1);

n[j + 10] = 100 * j;

}

System.out.println(" n time");

for (int j = 1; j <= 20; j++) {

long h = System.nanoTime();

SimpleSearch.seqSearch(a, 0, n[j]);

long h1 = System.nanoTime();
long h1 System.nanoTime();

long t = h1 - h;

System.out.println(" " + n[j] + " " + t);

}
System.out.println("Times are in nanoseconds");

}

public static void main(String[] args) {
timeSearch();

} }

SearchTime1 sample output
n time

0 1572954

10 2013

20 2237

3030 2520 time
 2520

40 3288

50 3871

60 3439

70 6520

80 5774

90 6260

100 4615

200 7587

300 9999 0
0 200 400 600 800 1000 1200

400 12696 n

500 15607

600 29191

700 18299

800 21851

900 5026

1000 5399

5000

10000

15000

20000

25000

30000

time

10

public class SearchTime2 { An adequate timing program
public static void timeSearch() { // Repetition factors

int[] r = { 0, 20000000, 20000000, 15000000, 10000000,
10000000, 10000000, 5000000, 5000000, 5000000, 5000000,
5000000, 5000000, 5000000, 5000000, 5000000, 5000000,
2500000, 2500000, 2500000, 2500000 };

int a[] = new int[1001];

int n[] = new int[21];

for (int j 1; j < 1000; j++)
for (int j = 1; j <= 1000; j++)

a[j] = j;

for (int j = 1; j <= 10; j++) {

n[j] = 10 * (j - 1);

n[j + 10] = 100 * j; }

System.out.println(" n t1 t\n");
for (int j = 1; j <= 20; j++) {

long h = System.nanoTime();

for (int i = 1; i <= r[j]; i++) {

p (, SimpleSearch.seqqSearch(a, 0,, n[j]);[j]); }}
long h1 = System.nanoTime();
long t1 = h1 - h;
double t = t1;
t /= r[j];
System.out.println(" " + n[j] + " " + t1 + " " + t); }

System.out.println("Times are in nanoseconds");

}

public static void main(String[] args) {

timeSearch(); } }

SearchTime2 sample output
n time
0 18.06976
10 48.875175
20 69.04334

time

30 96.90906
40 131.7094
50 146.09915
60 141.81258
70 160.09126
80 232.35527
90 307.9214
100 340.1613
200 200 590 4388 590.4388
300 941.6273
400 1305.8167
500 1416.4121
600 1574.6318
700 2004.8795
800 2525.205
900 2734.0051
1000 3634.6343

0
0 200 400 600 800 1000 1200

n

4000

3500

3000

2500

2000

1500

1000

500

time

11

•

Summary

• Algorithm complexity varies greatly, from O(1) to O(2n)
• Many algorithms can be chosen to solve a given problemMany algorithms can be chosen to solve a given problem

– Some fit the problem formulation tightly, some less so
– Some are faster, some are slower
– Some are optimal, some approximate

• Complexity is known for most algorithms we’re likely to use
– Analyze variations (or new algorithms) you create
– Many algorithms of interest are O(2n):

•	 Use or formulate special cases for your problem
•	 Limit problem size (decomposition, aggregation, approximation)
•	 Implement good code

– If necessary, reformulate your problem (you often can):
•	 Reverse inputs and outputs
•	 Change decision variables
•	 Develop analytic results to limit computational space to be

searched

12

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

