
1.204 Lecture 4 

JDBC 

Code examples from JDBC API Tutorial and Reference 

JDBC API 

•	 Package (library) of classes and methods to connect from a 
Java application to DBMS execute SQL statements and Java application to DBMS, execute SQL statements and 
retrieve results 
–	 SQL syntax primarily based on SQL-92 standard 
–	 Standard set of error codes 
–	 Standard way to connect and log on to DBMS 
–	 Standard representation of data types 
–	 Standard methods for data type conversions 
–	 Standard methods to send SQL queries and receive result sets 
–	 JDBC has level 1-4 functionality to deal with simple and 

sophisticated interfaces. 
–	 It can interface to files and other data sources as well 

1 

Note: most of this lecture has been removed due to copyright restrictions.



Transactions 

•	 Group of operations often must be treated as 
atomic unit 
–	 Start transaction 

•	 Insert OrderHeader 
•	 While more OrderDetail (line items) exist: 

–	 Select Part 
–	 Update Part inventory 
–	 Insert OrderDetail row 

–	 Commit transaction if everything succeeds 
–	 Roll back transaction if any error occurs: 

•	 In Order Header 
•	 In OrderDetail 
•	 Server crashes 
•	 Disk crashes 
•	 Network dies 
•	 Etc. 

Transaction properties (ACID) 

•	 Atomicityy. Either all of transactions are executed or all are 
rolled back 
–	 Account transfer debit and credit both succeed or fail 

•	 Consistency. Only legal states can exist 
– If order detail cannot be written, order header is rolled back 

•	 Isolation. Results not seen by other transactions until the 
transaction is complete 
–	 Account transfer debit and credit either both seen or neither is 

seenseen 
•	 Durability. Data is persistent even if hardware or software 

crashes: What is written on the disk is correct 
–	 Account balance is maintained 

7 



Transactions 

•	 Multi-user databases have other transaction issues 
•	 Two database actions conflict if one or both are 

it ti E l f bl write operations. Examples of problems: 
–	 Lost updates: 

•	 7 parts in inventory 
•	 Transactions 1 and 2 simultaneously read 7 as the current

quantity 
•	 Transaction 1 finishes first, adds 3 parts, writes 10 as quantity 
•	 Transaction 2 finishes second, subtracts 5 parts, writes 2 as 

quantityy!q 
–	 Uncommitted changes: 

•	 Transaction 1 adds 3 parts, writes 10 as quantity 
•	 Transaction 2 reads 10 as quantity 
•	 Transaction 1 aborts (rolls back), leaving transaction 2 with 

wrong data 

Transactions 

•	 Databases use locks for concurrency. One simple scheme is 
pessimistic locking: 
–	 Writes obtain an exclusive lock, preventing reads or writes 
–	 Reads obtain nonexclusive locks, allowing other reads but


preventing a writer from obtaining an exclusive lock


•	 Or you can use optimistic locking (logs) 
– No locks are used. Check if row exists, is same after operation 
– If not, issue error and program must retry. Better performance. 

•	 Databases use logs for recovery. 
–	 Log file of all changes is written in addition to making the changes

in the database. (This is a key bottleneck in architecture.) in the database. (This is a key bottleneck in architecture.) 
–	 Change can’t be committed until the log is written to stable storage. 

•	 Changes usually committed before tables actually updated on disk 
–	 If a change is rolled back, the log is read to reverse the 


transactions.

–	 If a system or disk crashes, the log is rerun from the last 


checkpoint to restore the database.

–	 Turn off logs when loading batch data or recovering 

8 



MIT OpenCourseWare
http://ocw.mit.edu 

1.204 Computer Algorithms in Systems Engineering 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



