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Announcements 

•	 PS #3 out this afternoon 
•	 Due: October 19 (graded by 10/23) 
•	 Office hours – Odoni: Mon. 2:30-4:30 

- Wed. 2:30-4:30 on Oct. 18 (No office hrs 10/16) 
_ Or send me a message 

•	 Quiz #1: October 25, open book, in class 
•	 Old quiz problems and solutions: 

posted on 10/19 

Topics in Queueing Theory 

•	 Introduction to Queues 
•	 Little’s Law 
•	 Markovian Birth-and-Death Queues 
•	 The M/M/1 and Other Markovian Variations 
•	 The M/G/1 Queue and Extensions 
•	 Priority Queues 
•	 Some Useful Bounds 
•	 Congestion Pricing 
•	 Queueing Networks; State Representations 
•	 Dynamic Behavior of Queues 

Lecture Outline 

•	 Introduction to queueing systems 
•	 Conceptual representation of queueing 

systems 
•	 Codes for queueing models 
•	 Terminology and notation 
•	 Little’s Law and basic relationships 
•	 Birth-and-death models 
•	 The M/M/1 queueing system 

Reference: Chapter 4, pp. 182-203 



Queues 
•	 Queueing theory is the branch of operations research 

concerned with waiting lines (delays/congestion) 
•	 A queueing system consists of a user source, a queue 

and a service facility with one or more identical parallel 
servers 

•	 A queueing network is a set of interconnected queueing 
systems 

•	 Fundamental parameters of a queueing system: 
- Demand rate - Capacity (service rate) 
- Demand inter-arrival times - Service times 
- Queue capacity and discipline (finite vs. infinite; 

FIFO/FCFS, SIRO, LIFO, priorities)

- Myriad details (feedback effects, “balking”, 


“jockeying”, etc.)
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Applications of Queueing Theory 

•	 Some familiar queues: 
_ Airport check-in; aircraft in a holding pattern 
_ Automated Teller Machines (ATMs) 
_ Fast food restaurants 
_ Phone center’s lines 
_ Urban intersection 
_ Toll booths 
_ Spatially distributed urban systems and services 

•	 Level-of-service (LOS) standards 
•	 Economic analyses involving trade-offs among 

operating costs, capital investments and LOS 
•	 Congestion pricing 



The Airside as a Queueing Network 

Strengths and Weaknesses of 

Queueing Theory


•	 Queueing models necessarily involve approximations 
and simplification of reality 

•	 Results give a sense of order of magnitude, changes 
relative to a baseline, promising directions in which to 
move 

•	 Closed-form results essentially limited to “steady
state” conditions and derived primarily (but not solely) 
for birth-and-death systems and “phase” systems 

•	 Some useful bounds for more general systems at
steady state 

•	 Numerical solutions increasingly viable for dynamic 
systems 

•	 Huge number of important applications 

Queueing Models Can Be Essential in 

Analysis of Capital Investments

Cost 

A Code for Queueing Models: 

A/B/m
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•	 Some standard code letters for A and B: 
_ M: Negative exponential (M stands for memoryless) 
_ D: Deterministic 
_ Ek:kth-order Erlang distribution 
_ G: General distribution 
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Terminology and Notation 

•	 Number in system: number of customers in 
queueing system 

•	 Number in queue or “Queue length”: number of 
customers waiting for service 

•	 Total time in system and waiting time 
•	 N(t) = number of customers in queueing system

at time t 
•	 Pn(t) = probability that N(t) is equal to n at time t 
•	 λn: mean arrival rate of new customers when 

N(t) = n 
•	 μ : mean (total) service rate when N(t) = nn

Terminology and Notation (2) 

•	 Transient state: state of system at t is 
influenced by the state of the system at t = 0 

•	 Steady state: state of the system is independent 
of initial state of the system 

•	 m: number of servers (parallel service 
channels) 

•	 If λn and the service rate per busy server are 
constants λ and μ, respectively, then λ =λ, μ = n n 
min (nμ, mμ); in that case:

_ Expected inter-arrival time = 1/λ

_ Expected service time = 1/μ


Some Expected Values of Interest 
at Steady State 

•	 Given: 
_ λ = arrival rate 

_ μ = service rate per service channel 


•	 Unknowns: 
_ L = expected number of users in queueing system 
_ Lq = expected number of users in queue 
_ W = expected time in queueing system per user (W = 

E(w)) 
_ Wq = expected waiting time in queue per user (Wq = 

E(wq)) 
•	 4 unknowns ⇒ We need 4 equations 

Little’s Law 
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Relationships among L, Lq, W, Wq 

•	 Four unknowns: L, W, Lq, Wq 
•	 Need 4 equations. We have the following 3 equations: 

_ L = λW (Little’s law) 
_ Lq = λWq 

1 
_	 W = Wq + 

μ 

•	 If we can find any one of the four expected values, we
can determine the three others 

•	 The determination of L (or other) may be hard or easy 
depending on the type of queueing system at hand 

∞ 

•	 L = ∑nPn (Pn : probability that n customers are in the system) 
n=0 

Birth-and-Death Queueing Systems 

1.	 m parallel, identical servers. 
2.	 Infinite queue capacity (for now). 
3.	 Whenever n users are in system (in 

queue plus in service) arrivals are
Poisson at rate of λ per unit of time. n 

4.	 Whenever n users are in system, 
service completions are Poisson at
rate of μ per unit of time. n 

5.	 FCFS discipline (for now). 

The Fundamental Relationship


Time: t 
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Time: t+Δt 

n users 

Pn(t) = Prob [n users 
in system at time t] 

n-1 users 
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The differential equations that 
determine the state probabilities 

Pn (t + Δt) = Pn+1(t) ⋅ μn+1 ⋅ Δt + Pn−1(t) ⋅ λn−1 ⋅ Δt + Pn (t) ⋅[1− (μn + λn ) ⋅ Δt] 

After a simple manipulation: 
dP

dt
n (t) = −(λn + μn ) ⋅ Pn (t) + λn−1 ⋅ Pn−1(t) + μn+1 ⋅ Pn+1(t) (1) 

(1) applies when n = 1, 2, 3,….; when n = 0, we have: 
dP0 (t) 

= −λ0 ⋅ P0 (t) + μ1 ⋅ P1(t) (2)
dt 

• The system of equations (1) and (2) is known as the 
Chapman-Kolmogorov equations for a birth-and-death 
system Pn (t + Δt) = Pn +1(t) ⋅ μn +1 ⋅ Δt + Pn−1(t) ⋅ λn −1 ⋅ Δt + Pn (t) ⋅[1− (μn + λn ) ⋅ Δt] 



Birth-and-Death System: State The “state balance” equations Transition Diagram 
•	 We now consider the situation in which the queueing λ0 λ1 λ2 λm-1 λm λm+1 system has reached “steady state”, i.e., t is large

enough to have Pn (t) = Pn      , independent of t, or dPn (t) = 0
dt 

•	 Then, (1) and (2) provide the state balance equations: μ1 μ2 3 

λ0 ⋅ P0 = μ1 ⋅ P1 n = 0 (3) • We are interested in the characteristics of the system 
(λn + μn ) ⋅ Pn = λn−1 ⋅ Pn−1 + μn +1 ⋅ Pn+1 n = 1, 2, 3,.. (4) under equilibrium conditions (“steady state”), i.e., when 
•	 The state balance equations can also be written directly the state probabilities Pn(t) are independent of t for 

from the state transition diagram large values of t 

• Can write system balance equations and obtain 
closed form expressions for Pn, L, W, Lq, Wq 

Solving….. M/M/1: Observing State Transition 
Diagram from Two Points 

Solving (3) and (4), we have:	 • From point 1: 
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M/M/1: Derivation of P0 and Pn 
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M/M/1: Derivation of L, W, Wq, and Lq 

∞ ∞ ∞ ∞ 
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High Sensitivity of Delay at High 

Levels of Utilization


Expected delay 

Capacity 

M/M/1: An alternative, direct derivation 
of L and W 

• For an M/M/1 system, with FCFS discipline: 

W = ∑
∞ (n +1) 

⋅ Pn = E[ N +1] = 
E[N ] +1 

= 
L +1 (1) 

n=0 μ μ μ μ 

•	 But from Little’s theorem we also have: 
L = λ ⋅W (2) 

• It follows from (1) and (2) that, as before: 
λ 1L = ; W = 

μ − λ μ − λ 
Does the queueing discipline matter? 

Demand 

ρ = 1 



M/M/1: E[B], the expected length of a 

busy period


Additional important M/M/1 results 

•	 The pdf for the total time in the system, w, can 
be computed for a M/M/1 system (and FCFS): 

fw (w) = (1− ρ )μe− (1− ρ )μw = (μ − λ )e− (μ −λ )w for w≥ 0 
Thus, as already shown, W = 1/(μ -λ) = 1/[μ (1-ρ)] 

•	 The standard deviation of N, w, Nq, wq are all 
proportional to 1/(1-ρ), just like their expected 
values (L, W, Lq, Wq, respectively) 

•	 The expected length of the “busy period”, E[B], 
is equal to 1/(μ -λ) 
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