1. The R.V.'s

- Y = distance from the center of the needle to closest of equidistant parallel lines 0< y < d/2
- Φ = angle of needle wrt horizontal $0 < \phi < \pi$

2. Joint Sample Space

3. Joint Probability Distribution

- Want $f_{Y,\Phi}(y,\phi)$
- Think about that tricky phrase, "At random"
- $+ f_{Y}(y) = 2/d \quad 0 < y < d/2$
- Independence implies

$$f_{Y,\Phi}(y,\phi) = f_{\Phi}(\phi) f_{Y}(y) = constant = 2/(\pi d)$$

4. Working in the Joint Sample Space

4. Working in the Joint Sample Space

$$P = \int_{0}^{\pi} d\phi \int_{0}^{(l/2)\sin\phi} dy (2/[\pi d])$$

$$P = (l/[\pi d]) \int_{0}^{\pi} d\phi \sin\phi = -(l/[\pi d])(-1-1)$$

$$P = 2l/[\pi d]$$

Bertrand's Paradox

Bertrand's Paradox: What is the probability that a random chord on this circle has length greater than $\sqrt{3}$?

Bertrand's Parodox: What is the probability that a random chord on this circle has length greater than $\sqrt{3}$? Three correct answers: 1/3, 1/4 and 1/2!!!!

Be very careful about that ambiguous word, "random".

See text for a sample space, probability assignment argument.

Spin the Flashlight

1. R.V.': *X*, *⊕*

- 1. R.V.': *X*, Θ
- 2. Sample space for Θ : $[-\pi/2, \pi/2]$

- 1. R.V.': *X*, Θ
- 2. Sample space for Θ : $[-\pi/2, \pi/2]$
- 3. Θ uniform over $[-\pi/2, \pi/2]$

- 1. R.V.': *X*, *⊕*
- 2. Sample space for Θ : $[-\pi/2, \pi/2]$
- 3. Θ uniform over $[-\pi/2, \pi/2]$
- 4. (a) $F_X(x) = P\{X < x\} = P\{\tan \Theta < x\} = P\{\Theta < \tan^{-1}(x)\} = 1/2 + (1/\pi) \tan^{-1}(x)$ (b) $f_X(x) = (d/dx) F_X(x) = 1/(\pi)(1 + x^2)$ all x

Cauchy pdf

Barriers to Travel

Perturbation Random Variables

Add a barrier to travel

Add a barrier to travel

$$P\{D_e>0\} = 2 (ab)(a[X_0 - b])/\{(X_0Y_0)(X_0Y_0)\}$$

Add a barrier to travel

Add 2 barriers to travel

And what about grids and one way streets?

Two-Way Streets

$$m = 7$$

$$n = 10$$

$$\frac{1}{3}(m+n) \le E[D] \le \frac{1}{3}(m+n+1)$$

Then, what about alternating one-way streets?