Functions of Random Variables

Logistical and Transportation Planning Methods

Massachusetts Institute of Technology Fall 2006

4 Steps:

- 1. Define the Random Variables
- 2. Identify the joint sample space
- 3. Determine the probability law over the sample space
- 4. Carefully work in the sample space to answer any question of interest

4 Steps: Functions of R.V.s

- 1. Define the Random Variables
- 2. Identify the joint sample space
- 3. Determine the probability law over the sample space
- 4. Carefully work in the sample space to answer any question of interest
 - 4a. Derive the CDF of the R.V. of interest, working in the original sample space whose probability law you know
 - 4b Take the derivative to obtain the desired PDF

Response Distance of an Ambulance

- ♦ 1. R.V.;s accident ambulance X_1 = location of the accident X_2 = location of the ambulance X_3 = response distance = X_1 X_2
- 2. Joint sample space is unit square in
 X₁ X₂ plane
- 3. PDF over square is uniform

4.a $F_D(y) = P\{D < y\} = 1 - (1-y)^2, 0 < y < 1$ 4.b $f_D(y) = 2(1-y), 0 < y < 1$.

In previous problem, E[D] = 1/3What if we fix the location of the ambulance at $X_2 = 1/2$?

Rectangular Response Area

$$D = |X_1 - X_2| + |Y_1 - Y_2|$$

Scaling to Get Expected Travel Distance

Ratio of Manhattan to Euclidean Distance Metrics

1. Define R.V.'s

$$D_1 = |X_1 - X_2| + |Y_1 - Y_2|$$

$$D_2 = \sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2}$$
Ratio = R = D₁ / D₂

 Ψ = angle of directions of travel wrt straight line connecting (X₁, Y₁) & (X₂, Y₂)

Directions of Travel

Directions of Travel

Directions of Travel