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Outline 

•	 Generic heuristics for the TSP 
•	 Euclidean TSP: tour construction, tour 

improvement, hybrids 
•	 Worst-case performance 
•	 Probabilistic analysis and asymptotic result 

for Euclidean TSP [Separate handout] 
•	 Extensions 

•	 Reference: Sections 6.4.5-6.4.13 + Handouts 



Node Covering (TSP, VRP, et al) 

•	 Huge literature, endless applications 
•	 Traveling Salesman Problem (TSP) is the

prototypical “hard” problem 
•	 Some applications: 

_ Routing of all kinds 
_ Job shop scheduling 
_ Vehicle routing problem (VRP) 
_ Dial-a-ride problem (DARP) 
_ Electronics industry 
_ Biotechnology 
_ Air traffic control 
_ Genomics 

Solving the TSP 

•	 Best existing exact algorithms can solve optimally
problems with up to 15,000 points (as of 2001) 

•	 Numerous heuristic approaches for good solutions to 
MUCH larger problems 

• For practical purposes, heuristics are very powerful. A 
classification: 
_ Tour construction 
_ Tour improvement 
_ Hybrid 

•	 Analysis of heuristics: 
_ Worst case _ Empirical 
_ Asymptotic _ Probabilistic 



Heuristics: Euclidean TSP
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The Nearest Neighbor Heuristic 
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Performance: Nearest Neighbor 

L(NEARNEIGHBOR) 1 1 

L(TSP) 
≤ 

2 
⎡log2 n⎤ + 

2 

•	 Poor performance in practice (+20%) 
•	 Can be improved through 

refinements (e.g., “likely subgraph”) 

Insertion Heuristics


?


Nearest insertion 

Farthest insertion 

Cheapest insertion 

Random insertion 



Worst-case Performance: 
Insertion Heuristics 

L(RANDOM INSERT ) 
≤ log n + 1•	

L(TSP) ⎡ 2 ⎤ 

L(NEAR INSERT )
•	 < 2

L(TSP )


L(FAR INSERT )

•	 => Unknown 

L(TSP )


L(CHEAP INSERT )

•	 < 2

L(TSP) 

Empirical Performance: Insertion 

Heuristics


•	 In practice “Farthest Insertion” and 
“Random Insertion” (+9%, +11%) seem 
to perform better than “Cheapest” and 
“Nearest” (+16%, +19%) 

•	 Can be further refined (e.g., though the 
Convex Hull heuristic) 



The MST Heuristic for the TSP 
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Merging with a second copy of the MST 
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Improve Solution by Skipping Points 

Already Visited


8 3


9

1


2


7


10


4


5


6


Worst-case Performance: MST 

Heuristic for TSP


L(MST) ≤ L(TSP-(longest edge of TSP)) < L(TSP) 

=> L(MST-TOUR) = 2*L(MST) < 2*L(TSP) 

=> L(MST − TOUR) 
< 2


L(TSP) 



The Christofides Heuristic: Step 1 
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The Christofides Heuristic: Step 2
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The Christofides Heuristic: Step 3 
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Improve Solution by Skipping 

Points Already Visited
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Worst-case Performance: The 

Christofides Heuristic


• L(CHRISTOFIDES) = L(MST) + L(M) 

• But, L(MST) < L(TSP) 
and L(M) ≤ L(M') ≤ L(TSP) / 2 

(M' = minimum length pairwise matching of 
odd- degree nodes of MST using only 
links that are part of TSP) 

Worst-case Performance: The 

Christofides Heuristic


L(CHRISTOFIDES) = L(MST) + L(M) 

But, L(MST) < L(TSP) 
and L(M) ≤ L(M') ≤ L(TSP) / 2 

(M' = minimum length pairwise matching of odd-
degree nodes of MST using only links that are 

=> 
part of TSP)

L(CHRISTOFIDES ) 
< 

3 

L(TSP) 2 



A Worst-Case Example for the 
Christofides Heuristic 

1- ε 1- ε 

(m nodes) 
m-1 

1 

1 

m 
(m+1 nodes) 

A Worst-Case Example for the 

Christofides Heuristic (2)


1- ε 1- ε 

L(Christofides) = 2*m*(1-ε) + m ≈ 3*m 



A Worst-Case Example for the 

Christofides Heuristic (3)


m-1 

1- ε 

m 

L(TSP) = m + m – 1 + 2*(1 – ε) ≈ 2*m + 1 

Therefore: 

L TSP 

L CHRISTOFIDES 

)( 
)( 
≈ 

+m 

m 

12 

3 
→ 

2 

3 as m → ∞ 

The Convex Hull Heuristic: 

Euclidean Plane
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Adding New Points 
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Convex Hull Heuristic (Euclidean TSP) 

•	 Optimal TSP tour cannot intersect 
itself 

•	 Therefore, points on the convex 
hull must appear in same order on 
optimal TSP tour 

•	 Provides good starting point; for 

instance, improves insertion

heuristics by 2-3%, on average




The Savings Algorithm 
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The Savings Algorithm (2) 

•	 Invented for vehicle routing; works well for TSP 
•	 Connect every node to the origin (“depot”) through a 

“round trip” (n-1 tours) 
•	 Merge tours, one node at a time, by maximizing “savings” 

s(i,j) = d(D,i) + d(D,j) – d(i,j) 
•	 Tours should not violate such constraints as: 

_ Vehicle capacity 
_ Maximum length of a tour 
_ Maximum number of stops per tour 

•	 O(n3) 
•	 Performs very well in practice; very flexible 
•	 Li, F., B. Golden and E. Wasil (2005), “Very large-scale 

vehicle routing”, Computers and Opers. Research 



The Savings Algorithm (3)
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Tour Improvement Heuristics: 
Node Insertion 

p 

i 

q 

j 

k 

• d(p,q) + d(j,i) + d(i,k) vs. d(p,i) + d(i,q) + d(j,k) 

• O(n2) computational effort on each iteration 



Tour Improvement Heuristics: 
2-exchange (or “2-opt”) 
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Tour Improvement Heuristics: 
3-exchange (or “3-opt”) 
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2-opt really 
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n 
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Tour Improvement Heuristics: 

Variable Depth Search


•	 Lin and Kernighan (1973) 
•	 Use combinations of 2-opt and 3-opt 

searches 
•	 Initially many “short-depth”, later fewer 
•	 Has been extended to “deeper” 

searches than 3-opt 
•	 Numerous variations 


