
Networks: Lecture 2

Amedeo R. Odoni

November 20, 2006

Outline

•	 Generic heuristics for the TSP
•	 Euclidean TSP: tour construction, tour

improvement, hybrids
•	 Worst-case performance
•	 Probabilistic analysis and asymptotic result

for Euclidean TSP [Separate handout]
•	 Extensions

•	 Reference: Sections 6.4.5-6.4.13 + Handouts

Node Covering (TSP, VRP, et al)

•	 Huge literature, endless applications
•	 Traveling Salesman Problem (TSP) is the

prototypical “hard” problem
•	 Some applications:

_ Routing of all kinds
_ Job shop scheduling
_ Vehicle routing problem (VRP)
_ Dial-a-ride problem (DARP)
_ Electronics industry
_ Biotechnology
_ Air traffic control
_ Genomics

Solving the TSP

•	 Best existing exact algorithms can solve optimally
problems with up to 15,000 points (as of 2001)

•	 Numerous heuristic approaches for good solutions to
MUCH larger problems

• For practical purposes, heuristics are very powerful. A
classification:
_ Tour construction
_ Tour improvement
_ Hybrid

•	 Analysis of heuristics:
_ Worst case _ Empirical
_ Asymptotic _ Probabilistic

Heuristics: Euclidean TSP

8

9
1

3

2

7

10

4

5

6

The Nearest Neighbor Heuristic

7

6

5

2

8 3

9

1

10

4

Performance: Nearest Neighbor

L(NEARNEIGHBOR) 1 1

L(TSP)
≤

2
⎡log2 n⎤ +

2

•	 Poor performance in practice (+20%)
•	 Can be improved through

refinements (e.g., “likely subgraph”)

Insertion Heuristics

?

Nearest insertion

Farthest insertion

Cheapest insertion

Random insertion

Worst-case Performance:
Insertion Heuristics

L(RANDOM INSERT)
≤ log n + 1•	

L(TSP) ⎡ 2 ⎤

L(NEAR INSERT)
•	 < 2

L(TSP)

L(FAR INSERT)

•	 => Unknown

L(TSP)

L(CHEAP INSERT)

•	 < 2

L(TSP)

Empirical Performance: Insertion

Heuristics

•	 In practice “Farthest Insertion” and
“Random Insertion” (+9%, +11%) seem
to perform better than “Cheapest” and
“Nearest” (+16%, +19%)

•	 Can be further refined (e.g., though the
Convex Hull heuristic)

The MST Heuristic for the TSP

8 3

9

10

7

6

1

5

4

2

Merging with a second copy of the MST

8 3

10

9

7

6

1

5

4

2

Improve Solution by Skipping Points

Already Visited

8 3

9

1

2

7

10

4

5

6

Worst-case Performance: MST

Heuristic for TSP

L(MST) ≤ L(TSP-(longest edge of TSP)) < L(TSP)

=> L(MST-TOUR) = 2*L(MST) < 2*L(TSP)

=> L(MST − TOUR)
< 2

L(TSP)

The Christofides Heuristic: Step 1

8 3

9

7

6

1

5

4

2

*

*

*

*

*

10
 *

The Christofides Heuristic: Step 2

8 3
*
* 9

1

2 *
7

10

* *

5 4

*
6

The Christofides Heuristic: Step 3

8 3

10

9

7

6

1

5

4

2

Improve Solution by Skipping

Points Already Visited

8 3

10

9

7

6

1

5

4

2

Worst-case Performance: The

Christofides Heuristic

• L(CHRISTOFIDES) = L(MST) + L(M)

• But, L(MST) < L(TSP)
and L(M) ≤ L(M') ≤ L(TSP) / 2

(M' = minimum length pairwise matching of
odd- degree nodes of MST using only
links that are part of TSP)

Worst-case Performance: The

Christofides Heuristic

L(CHRISTOFIDES) = L(MST) + L(M)

But, L(MST) < L(TSP)
and L(M) ≤ L(M') ≤ L(TSP) / 2

(M' = minimum length pairwise matching of odd-
degree nodes of MST using only links that are

=>
part of TSP)

L(CHRISTOFIDES)
<

3

L(TSP) 2

A Worst-Case Example for the
Christofides Heuristic

1- ε 1- ε

(m nodes)
m-1

1

1

m
(m+1 nodes)

A Worst-Case Example for the

Christofides Heuristic (2)

1- ε 1- ε

L(Christofides) = 2*m*(1-ε) + m ≈ 3*m

A Worst-Case Example for the

Christofides Heuristic (3)

m-1

1- ε

m

L(TSP) = m + m – 1 + 2*(1 – ε) ≈ 2*m + 1

Therefore:

L TSP

L CHRISTOFIDES

)(
)(
≈

+m

m

12

3
→

2

3 as m → ∞

The Convex Hull Heuristic:

Euclidean Plane

8

9

10

7

1

5
4

3

2

6

Adding New Points

8
 3

9

1

2

7

10

5

4

6

Convex Hull Heuristic (Euclidean TSP)

•	 Optimal TSP tour cannot intersect
itself

•	 Therefore, points on the convex
hull must appear in same order on
optimal TSP tour

•	 Provides good starting point; for

instance, improves insertion

heuristics by 2-3%, on average

The Savings Algorithm

8	 3

9

7

6

1

5

4

2

Depot (D)

10

The Savings Algorithm (2)

•	 Invented for vehicle routing; works well for TSP
•	 Connect every node to the origin (“depot”) through a

“round trip” (n-1 tours)
•	 Merge tours, one node at a time, by maximizing “savings”

s(i,j) = d(D,i) + d(D,j) – d(i,j)
•	 Tours should not violate such constraints as:

_ Vehicle capacity
_ Maximum length of a tour
_ Maximum number of stops per tour

•	 O(n3)
•	 Performs very well in practice; very flexible
•	 Li, F., B. Golden and E. Wasil (2005), “Very large-scale

vehicle routing”, Computers and Opers. Research

The Savings Algorithm (3)

8

9

10

7

6

1

5

4

3

2

D

Tour Improvement Heuristics:
Node Insertion

p

i

q

j

k

• d(p,q) + d(j,i) + d(i,k) vs. d(p,i) + d(i,q) + d(j,k)

• O(n2) computational effort on each iteration

Tour Improvement Heuristics:
2-exchange (or “2-opt”)

3

5

2
2

6
6

5

3

1
1

→

4
4

−n
=

n(n 1) O(n2)
2 2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

⎫
⎪
⎬
⎪
⎭

−
−
−

⎫
⎪
⎬
⎪
⎭

⎧
⎪
⎨
⎪
⎩

−
−
−

⎧
⎪
⎨
⎪
⎩

⎫
⎪
⎬
⎪
⎭

⎫
⎪
⎬
⎪
⎭

−
−
−

⎧
⎪
⎨
⎪
⎩

−
−
−

⎧
⎪
⎨
⎪
⎩

⎫
⎪
⎬
⎪
⎭

−
−
−

⎫
⎪
⎬
⎪
⎭

⎧
⎪
⎨
⎪
⎩

−
−
−

⎧
⎪
⎨
⎪
⎩

⎫
⎪
⎬
⎪
⎭

−
−
−

⎫
⎪
⎬
⎪
⎭

⎧
⎪
⎨
⎪
⎩

−
−
−

⎧
⎪
⎨
⎪
⎩

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

Tour Improvement Heuristics:
3-exchange (or “3-opt”)

1 2 6 1 6 2 6 4 6 1

2 3 1 3 3 2 2 4

3 4 5 4 5 1 5 3 5

2-opt really

6 3 6 2 6 3 6 4
6

4 4 1 1 4 4 2 3 1

5 2 5 3 5 1 5 2 5

n
→ O(n3)

3

Tour Improvement Heuristics:

Variable Depth Search

•	 Lin and Kernighan (1973)
•	 Use combinations of 2-opt and 3-opt

searches
•	 Initially many “short-depth”, later fewer
•	 Has been extended to “deeper”

searches than 3-opt
•	 Numerous variations

