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General Comments 

•	 From continuous to a more “discretized” travel 
environment 

•	 Enormous literature and variety of problems 
•	 Transportation and logistics, urban services just two of 

the major areas of applications 
•	 Level of detail of model depends on problem 
•	 Numerous interpretations of “nodes” (“points”, 

“vertices”) and “arcs” (“links”, “edges”) 
•	 Will concentrate on routing and location problems 
•	 Will assume that efficient shortest path algorithms are 

available 



Outline and References 

•	 Introduction 
•	 Minimum Spanning Tree (MST) 
•	 Chinese Postman Problem (CPP) 
•	 Skim Sections 6.1 and 6.2, read 

Sections 6.3- 6.4.4 in Larson and Odoni 
•	 Far more detailed coverage in (among

others) Ahuja, R., T. L. Magnanti and J. 
B. Orlin, Network Flows, Prentice-Hall, 
1993. 
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Examples of Nodes & Arcs 

• 
• 
• 
• 
• 

Nodes/ Vertices/ Points 
Street intersections 
Towns 
Cities 
Electrical junctions 
Project milestones 

Arcs/ Edges/ Links 
• Street segments 
• Country roads 
• Airplane travel time 
• Circuit components 
• Project tasks 

Network Terminology


• N = sets of nodes 
•	 A = set of arcs 
•	 G(N,A) 
•	 Incident arc 
•	 Adjacent nodes 
•	 Adjacent arcs 
•	 Path 
•	 Degree of a node 

•	 In-degree 
•	 Out-degree 
•	 Cycle or circuit 
•	 Connected nodes 
•	 Connected 

undirected graph 
•	 Strongly

connected 
directed graph 

•	 Subgraph 



Network Terminology - con't.


• Tree of an • Spanning tree of 
undirected network G(N,A) is a tree 
is a connected containing all n 
subgraph having no nodes of N 
cycles • Length of a path S 

•	 A tree having t L(S) = ∑ l(i, j)
nodes contains (t-1) ( i, j )∈S


edges • d(x,y), d(i,j)


Shortest Path Problem 

•	 Find the shortest path (more generally, least cost path) 
between two nodes, starting at Node O and ending at 
Node D. 

•	 Dijkstra’s node labeling algorithm (essentially dynamic 
programming); one-to-all paths; all edge lengths are 
non-negative; O(n2). 

•	 Floyd’s algorithm; negative edge lengths OK (discovers 
negative cycles); all-to-all paths; non-obvious; O(n3). 

•	 Numerous variations and extensions: all-to-one; critical 
edge; k-th shortest path; shortest path on stochastic 
networks; shortest path on stochastic and dynamic 
networks 



Node Labeling Algorithm: Dijkstra 

• Shortest path from a node 
• k=1, start at origin node 
• At the end of iteration k: 

_ the set of k CLOSED NODES consists of the 
k closest nodes to the origin. 

_ the label of each OPEN NODE adjacent to one 
or more closed nodes indicates our current 
'best guess' of the minimal distance to that 
node. 

Minimum Spanning Tree 
(MST) Problem 

•	 Assume an undirected graph 
•	 Problem: Find a shortest length 

spanning tree of G(N, A). 
•	 Why is this an important problem? 
•	 If |N|=n, then each spanning tree 

contains (n-1) links. 
•	 MST may not be unique 



MST Example
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MST


•	 Greedy algorithm works! 
•	 Algorithm: Start at an arbitrary node. 

Keep connecting to the growing sub-
tree the closest unattached node. 

•	 Fundamental property: The shortest 
link out of any sub-tree (during the 
construction of the MST) must be a part 
of the MST 



Proof of fundamental property


Proof by contradiction 

T1 

Proof of fundamental property


Proof by contradiction 

T1 

T2 
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MST = T1 + T2 + (one connecting link) 



Corollary 

•	 In an undirected network G, the link 
of shortest length out of any node is 
part of the MST. 

MST Example
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MST Example (continued)
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MST Example (continued)
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MST Example (continued)


C D 

F 

A B 

G 

5 

6 

10 

7 

7 

9 

5 

6 

5 

75 

6 

E


MST Example: A Solution 
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MST Example: An Alternative Solution 
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MST vs. Steiner Problem in 
the Euclidean Plane 

•	 MST: All links must be rooted in the 
node set, N, to be connected 

•	 MST is an easy problem 

•	 Steiner problem: Links can be rooted at 
any point on the plane 

•	 The Steiner problem is, in general, very 
difficult 



MST vs. Steiner: Example


Seattle Seattle 

Kansas City Kansas City 

San Diego San Diego 

MST vs. Steiner: Example (2)


MST Total = 3,000 miles Steiner Total = 2,850 miles
(-5%) 

Seattle Seattle 

1,700 

Kansas City 
900 Kansas City 1,300 

1,150 

800 

San Diego San Diego 



Equilateral Triangle


√3/3 1 L(STEINER) 
= ≈ 0.8731 

L(MST ) 2 
√3/3 √3/3 (~13% savings) 

Chinese Postman Problem 

• Find the minimum length tour (or 
cycle) that “covers” every link of a 
network at least once 

• Will look at the CPP on an 
undirected network 



Minimize ∑ n(i, j) ⋅ l(i, j) [n(i, j) is the no. of 
(i , j)∈A times (i, j) is “covered”] 
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The CPP on undirected graphs: 

Background


•	 EULER TOUR: A tour which traverses every 
edge of a graph exactly once. 

•	 If we can find an Euler tour on G(N,A), this is 
clearly a solution to the CPP. 

•	 The DEGREE of a node is the number of 
edges that are incident on this node. 

•	 Euler’s Theorem (1736): A connected 
undirected graph, G(N, A), has an Euler tour
iff it contains exactly zero nodes of odd 
degree. [If G(N, A) contains exactly two 
nodes of odd degree, then an Euler PATH
exists.] 



The number of odd degree nodes in a 
graph is always even! 

1.	 Each edge has two incidences. 
2.	 Therefore, the total number of incidences, P, is 

an even number. 
3.	 The total number of incidences, Pe, on the 

even-degree nodes is an even number. 
4.	 Therefore, the total number of incidences, Po, 

on the odd-degree nodes (Po = P - Pe) is an
even number. 

5.	 But Po is the number of incidences on odd-
degree nodes. For Po to be even, it must be 
that m, the number of odd-degree nodes, is 
also even. 

Networks with Euler Tour or Path 
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Image by MIT OCW.

Image by MIT OCW.



Euler’s famous “test problem”: the 

parade route 

The Seven Bridges of Konigsberg 

Island A Island B 

N = North Side 

S = South Side 

… reduced to a network problem 

Seven Bridges of Konigsberg as a Network 

N 

S 

A B 



Drawing an Euler Tour 

•	 It is easy to draw manually an Euler 
tour on a network that has one. Just 
do not traverse an “isthmus”, i.e., an 
edge whose erasure will divide the yet 
uncovered part of the network into two 
separate, non-empty sub-networks. 

An Easy Chinese Postman Problem 



CPP Example 
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The CPP Algorithm (Undirected Graph) 

•	 BASIC IDEA: Take the given graph, G(N, A), 
and add “dummy” edges to it, until G has no 
odd degree nodes. In adding edges, try to 
add as little length as possible to G. 

STEP 1: Identify all m nodes of odd degree on
G(N, A). [Remember m is even.] 

STEP 2: Find the minimum-cost, pairwise 
matching of the odd-degree nodes. [Apply
the “non-bipartite matching” algorithm (a.k.a. 
“flower and blossom” of Ellis and Johnson 
(1972) – see Chapter 12 of Ahuja, Magnanti
and Orlin.] 

A 8 B 



The CPP Algorithm (Undirected 

Graph) [continued]


STEP 3: Modify G(N, A) by adding to it 
the set, M, of (dummy) edges 
corresponding to the minimum-cost 
pair-wise matching found in STEP 2. 
Call this augmented graph G'. 

[G'(N, A∪M)] 
STEP 4: Find an Euler tour on G'.  This 

tour is a solution to the CPP. 

CPP Example (2) 
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CPP Example (3) 
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The Solution 

• Pair-wise matches: 
1. {A-D, E-B}, “cost” = 12


2. {A-B, D-E}, “cost” = 16


3. {A-E, B-D}, “cost” = 20


• Select “1”. 
• Total CPP tour length = 48 + 12 = 60


• A tour: {A, B, C, A, D, C, E, B, E, D, A} 



Number of Matches 

•	 Given m odd-degree nodes, the number 
of possible pair-wise matches is: 

2 
m 

(m − 1) ⋅ (m − 3) ⋅ ......⋅ 3 ⋅1 = ∏(2i − 1) 
i =1 

Minimize ∑ n(i, j) ⋅ l(i, j) [n(i, j) is the no. of 
(i , j)∈A times (i, j) is “covered”] 
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3,140 units of total length; 8 odd-degree nodes; 
105 possible pair-wise matching combinations 

250 

120 80 150 100 

250 250250280 

120 150 

80 100 

150 

120 

150 260 180 

A B H 

G 
FEDC 

I J K L M 

300 

* 
* * * 

* 
* * * 

Optimal pair-wise matching can be found by inspection; 
490 dummy edge units (double-covered); optimal CPP 
tour has length of 3,830 units 
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Solving Manually on a Graph 

•	 Given a good “map”, it is possible to solve 
manually, to near-optimality, large CPPs on 
planar graphs. 

•	 KEY OBSERVATION: In a minimum-cost, pair-
wise matching of the odd degree nodes, no two
shortest paths in the matching can have any
edges in common. 

•	 IMPLICATIONS: 
_ Eliminate large no. of potential matches 
_ Search only in “neighborhood” of each odd-

degree node 

Solving Manually (2) 
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Related CPP Problems


•	 CPP on directed graphs can also be solved
efficiently (in polynomial time) [Problem 6.6 in 
L+O] 

•	 CPP on mixed graph is a “hard” problem 
[Papadimitriou, 1976] 

•	 Many variations and applications: 
_ Snow plowing 
_ Street sweeping 
_ Mail delivery => “multi-postmen” 
_ CPP with time windows 
_ Rural CPP 

Applications 

•	 Each of these problem types has been 
greatly refined and expanded over the 
years 

•	 Each can be implemented via computer 
in complex operating environments 

•	 The Post office, FedEx, truckers, even 
bicycled couriers use these techniques 




