
Spatially Distributed
Queues II

M/G/1
2 Servers
N servers: Hypercube Queueing Model
Approximations

Setup: Hypercube
Queueing Model

Region comprised of geographical atoms
or nodes
Each node j is an independent Poisson
generator, with rate λj

Travel times: τil = travel time from node i
to node j
N servers
Server locations are random: lnj

Setup: Hypercube
Queueing Model - con't.

Server assignment: one assigned
State dependent dispatching
Service times: mean = 1/μn ; negative
exponential density
Service time dependence on travel time
We allow a queue (FCFS, infinite
capacity)

Fixed Preference Dispatch
Policies for the Model

Idea: for each atom, say Atom 12, there
exists a vector of length N that is the
preference-ordered list of servers to
assign to a customer from that atom
Example: {3,1,7,5,6,4,2}, for N=7.
Dispatcher always will assign the most
preferred available server to the customer
Usually order this list in terms of some
travel time criterion.

Example Dispatch Policies

SCM: Strict Center of Mass
Place server at its center of mass
Place customer at its center of mass
Estimate travel times: center of mass to
center of mass

MCM: Modified Center of Mass
Place server at its center of mass
Keep customer at centroid of atom
Estimate travel times: center of mass to
centroid of atom

Example Dispatch Policies

EMCM: Expected Modified Center of
Mass

Do the conditional expected travel time
calculation correctly, conditioned on the
centroid of the atom containing the customer

Are fixed preference
policies optimal?

AVL: Automatic Vehicle Location:
dispatch the real time nearest server

This can be incorporated into the Hypercube
framework, but very carefully!
Consider two servers:

RA1RA2
X

Customer

X

Customer in square
marked X. Place an
asterisk in each square
that could have the
closest server.
Assume each server is available
and is located 'somewhere' in
his/her square "police beat."

X* *
**

**

*
*

*

X* *
**

**

**

* *

*
*

*

*

*

*
*
*

*
*

*

What to know about the
Hypercube Queueing Model

Know the 2-server setup
Be able to work with a 3-server model

Read in the text the formulas to apply
Forget the cases for N>3 servers.
Know Hypercube Approximation
Procedure (still to come -- fasten your seat
belts!)

0,0 0,1

1,0 1,1

0,0 0,1

1,0 1,1

0,0,0 0,0,1

0,1,0

1,0,0 1,0,1

1,1,0

0,1,1

1,1,1

Hypercube Approximation Hypercube Approximation
Procedure: A General TechniqueProcedure: A General Technique

Want to reduce dramatically the number
of simultaneous equations to solve
The procedure reduces the number of
equations from 2N simultaneous linear
equations to N simultaneous nonlinear
equations.
We look at only those performance
measures we need, not at micro-structure
of the binary state space

P{Sk} ≡ Pk = Nkρ kP0 / k! k = 0,1,2,..., N −1

P{SN} ≡ PN = NN ρ N P0 /(N![1− ρ])

P{S0} ≡ P0 = [Niρ i / i!
i= 0

N −1

∑ + N N ρN /(N!{1− ρ})]−1

Hypercube Approximation ProcedureHypercube Approximation Procedure
A General TechniqueA General Technique

Theory: Sampling Servers Without
Replacement from M/M/N Queue

From we know the aggregate
state probabilities:

M / M / N / ∞

The Hypercube Model,
when the state space is
compressed from its cube
in N dimensions to a 'line'
birth and death process,
always reduces to an
M/M/N queue (assuming
service times are not
server-specific)

Key expression:
For our applications, we do not need to know the fine grained
binary state probabilities. Rather we need dispatch probabilities and
server workloads.

P{B1, B2, ..., Bj , Fj +1}

What about 'B-' probability reasoning?
"Flips coins" until first Heads is obtained:

P{B1, B2, ..., Bj , Fj +1} ≈
ρ j (1− ρ) j = 0,1,2,..., N −1

ρ N j = N
⎧
⎨
⎩

⎫
⎬
⎭

Incompatible with known state probability PN
Doesn't include biases.

Let's "Divide and conquer":

P{B1, B2, ..., Bj , Fj +1} = P{B1, B2 ,..., Bj ,Fj +1 | Sk}
k = 0

k = N

∑ Pk (*)

P{B1, B2, ..., Bj , Fj +1 | Sk} = P{Fj +1 | B1,B2, ..., Bj , Sk}...P{B2 | B1Sk}P{B1 | Sk}

P{B1, B2, ..., Bj , Fj +1 | Sk} = N − k
N − j

... ... k −1
N −1

...... k
N

 (**)

Working carefully and slowly to find the state-conditioned
dispatch probabilities:

Can plug (**) back into (*) and obtain an exact expression.
Manipulate it to obtain a convenient form as "B-" probability
reasoning with an 'A+" correction term:

P{B1, B2, ..., Bj , Fj +1} = Q(N ,ρ, j)ρ j (1− ρ) (** *)

"Correction factor"

Explore properties of Correction Factor

P{B1, B2, ..., Bj , Fj +1} = P{Fj +1 | B1B2...Bj}P{Bj | B1B2...Bj −1}...P{B1}

Q(N,r, j) = [
P{Fj +1 | B1...Bj}

1 − ρ
][

P{Bj | B1...Bj −1}
ρ

]...[
P{B1}

ρ
]

The desired dispatch probabilities can be written as a telescoped expression:

Use above in Eq.(***) to obtain:

≤ 1 ≥ 1 = 1

Gn
k ≡ set of geographical atoms for which unit n is

 the kth preferred dispatch alternative

ρn = λ jP{Fn
j∈Gn

1
∑ }+ λ jP{Bnj1

Fn}
j ∈G n

2
∑ + λ jP{Bnj1

Bnj2
Fn}

j∈Gn
3

∑ + ... + λPN / N

ρn = λ j(1 − ρn
j∈Gn

1
∑) + λ jQ(N ,ρ,1)ρnj1

(1 − ρn)
j∈Gn

2
∑ +

 λ jQ(N, ρ,2)ρnj1
ρnj 2

(1− ρn)
j ∈Gn

3
∑ + ... + λPN / N

nlj ≡ id # of the j th preferred unit for atom l
Set μ =1

The last equation gives N nonlinear simultaneous equations in
the unknown workloads, ρn, subject to the constraint that

ρn
n=1

N

∑ = λ "normalization"

Typically converges in 3 to 5 iterations, within 1 to 2% of
'exact Hypercube' results

Response patterns:

fnkj k =
λk

λ
Q(N ,ρ, j −1){ ρnkl

l=1

j −1

∏ }(1 − ρnkj
)

id # of jth preferred
unit for atom k

j-1 more
preferred
units

jth preferred
unit

Square Root Laws (approximations)

In Chapter 3 we found

E[D] = C
A

N0

depended on distance metric
and location strategy

Area of service region

Number of mobile servers

Assumes all N0 servers are available or free (not busy)

Now consider N to be a R.V.

Might we expect the following to be true?

E[D | N = k] = C
A
k

 k = 1,2,..., N0

What if the locations of servers were determined by a homogenous
spatial Poisson process, with busy servers selected by "random erasers"?

Getting to Expected Travel Distance

E[D] = P0 D0 + Pk
k =1

N0

∑ C
A
k

From M/M/N0
queueing model

where Pk = Probability of k servers available (M/M/N0)

Moving to E[D]

Since P0 0, we can write≅
E[D] ≅ C AEstates of

M / M / N 0

[1/ N]

We now apply "B-" probability reasoning, to get

E[D] ≅ C
A

E[N]

(Jensen's Inequality shows that this Eq. is a lower bound to true E[D].)

Finishing

E[N] ≈ N0 − N0ρ = N0 (1 − ρ)

E[D] ≈ C
A

N0 (1 − ρ)

E[T] ≈
C
v

A
N0 (1 − ρ)

+
v
a

Acceleration term

Great results in practice

Jensen's Inequality

If g(X) is a convex function over the region of non-zero probability,
then E[g(X)] ≥ g(E[X])

(Problem 5.5 explores this further.)

Jensen's Inequality

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Series1

N

1/ N

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Series1

Suppose 50% of
probability
mass here

And suppose 50%
of probability
mass here

"B-" mean (0.426)

1/ N

True mean (0.658)

E[]=0.5*(1) + 0.5*(10)-0.5 = 0.5*(1 + 0.316) = 0.658
1/E[N]-0.5 = 1/(1*0.5 + 10*0.5)-0.5 =1/(5.5)-0.5 = 1/2.345 = 0.426

1/ N

	Spatially Distributed Queues II
	Setup: Hypercube Queueing Model
	Setup: Hypercube Queueing Model - con't.
	Fixed Preference Dispatch Policies for the Model
	Example Dispatch Policies
	Example Dispatch Policies
	Are fixed preference policies optimal?
	What to know about the Hypercube Queueing Model
	Hypercube Approximation Procedure: A General Technique
	The Hypercube Model, when the state space is compressed from its cube in N dimensions to a 'line' birth and death process, alw
	Square Root Laws (approximations)
	Now consider N to be a R.V.
	Getting to Expected Travel Distance
	Moving to E[D]
	Finishing
	Jensen's Inequality
	Jensen's Inequality

