
Spatially Distributed 
Queues II

M/G/1
2 Servers
N servers: Hypercube Queueing Model
Approximations



Setup:  Hypercube 
Queueing Model

Region comprised of geographical atoms 
or nodes
Each node j is an independent Poisson 
generator, with rate λj

Travel times: τil = travel time from node i
to node j
N servers
Server locations are random: lnj



Setup:  Hypercube 
Queueing Model - con't.

Server assignment:  one assigned
State dependent dispatching
Service times:  mean = 1/μn ; negative 
exponential density
Service time dependence on travel time
We allow a queue (FCFS, infinite 
capacity)



Fixed Preference Dispatch 
Policies for the Model

Idea:  for each atom, say Atom 12, there 
exists a vector of length N that is the 
preference-ordered list of servers to 
assign to a customer from that atom
Example:  {3,1,7,5,6,4,2}, for N=7.
Dispatcher always will assign the most 
preferred available server to the customer
Usually order this list in terms of some 
travel time criterion.



Example Dispatch Policies

SCM:  Strict Center of Mass
Place server at its center of mass
Place customer at its center of mass
Estimate travel times:  center of mass to 
center of mass

MCM:  Modified Center of Mass
Place server at its center of mass
Keep customer at centroid of atom
Estimate travel times:  center of mass to 
centroid of atom



Example Dispatch Policies

EMCM:  Expected Modified Center of 
Mass

Do the conditional expected travel time 
calculation correctly, conditioned on the 
centroid of the atom containing the customer



Are fixed preference 
policies optimal?

AVL:  Automatic Vehicle Location:  
dispatch the real time nearest server

This can be incorporated into the Hypercube 
framework, but very carefully!
Consider two servers:
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X

Customer in square
marked X.  Place an
asterisk in each square
that could have the 
closest server.
Assume each server is available
and is located 'somewhere' in
his/her square "police beat."
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What to know about the 
Hypercube Queueing Model

Know the 2-server setup
Be able to work with a 3-server model

Read in the text the formulas to apply
Forget the cases for N>3 servers.
Know Hypercube Approximation 
Procedure (still to come -- fasten your seat 
belts!)
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Hypercube Approximation Hypercube Approximation 
Procedure:  A General TechniqueProcedure:  A General Technique

Want to reduce dramatically the number 
of simultaneous equations to solve
The procedure reduces the number of 
equations from 2N simultaneous linear 
equations to N simultaneous nonlinear 
equations.
We look at only those performance 
measures we need, not at micro-structure 
of the binary state space



P{Sk} ≡ Pk = Nkρ kP0 / k!     k = 0,1,2,..., N −1

P{SN} ≡ PN = NN ρ N P0 /(N![1− ρ])

P{S0} ≡ P0 = [ Niρ i / i!
i= 0

N −1

∑ + N N ρN /( N!{1− ρ})]−1

Hypercube Approximation ProcedureHypercube Approximation Procedure
A General TechniqueA General Technique

Theory:  Sampling Servers Without 
Replacement from M/M/N Queue

From we know the aggregate 
state probabilities:

M / M / N / ∞



The Hypercube Model, 
when the state space is 
compressed from its cube 
in N dimensions to a 'line' 
birth and death process, 
always reduces to an 
M/M/N queue (assuming 
service times are not 
server-specific)



Key expression:
For our applications, we do not need to know the fine grained
binary state probabilities.  Rather we need dispatch probabilities and 
server workloads.  

P{B1, B2, ..., Bj , Fj +1}

What about 'B-' probability reasoning?
"Flips coins" until first Heads is obtained:

P{B1, B2, ..., Bj , Fj +1} ≈
ρ j (1− ρ)     j = 0,1,2,..., N −1

ρ N                        j = N
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Incompatible with known state probability PN
Doesn't include biases.

Let's "Divide and conquer":

P{B1, B2, ..., Bj , Fj +1} = P{B1, B2 ,..., Bj ,Fj +1 | Sk}
k = 0

k = N

∑ Pk     (*)



P{B1, B2, ..., Bj , Fj +1 | Sk} = P{Fj +1 | B1,B2, ..., Bj , Sk}...P{B2 | B1Sk}P{B1 | Sk}

P{B1, B2, ..., Bj , Fj +1 | Sk} =        N − k
N − j

...                       ... k −1
N −1

...... k
N

  (**)

Working carefully and slowly to find the state-conditioned 
dispatch probabilities:

Can plug (**) back into (*) and obtain an exact expression.
Manipulate it to obtain a convenient form as "B-" probability 
reasoning with an 'A+" correction term:

P{B1, B2, ..., Bj , Fj +1} = Q(N ,ρ, j)ρ j (1− ρ)     (** *)

"Correction factor"



Explore properties of Correction Factor

P{B1, B2, ..., Bj , Fj +1} = P{Fj +1 | B1B2...Bj}P{Bj | B1B2...Bj −1}...P{B1}

Q(N,r, j) = [
P{Fj +1 | B1...Bj}

1 − ρ
][

P{Bj | B1...Bj −1}
ρ

]...[
P{B1}

ρ
]

The desired dispatch probabilities can be written as a telescoped expression:

Use above in Eq.(***) to obtain:

≤ 1          ≥ 1           = 1



Gn
k ≡ set of geographical atoms for which unit n is 

         the kth  preferred dispatch alternative

ρn = λ jP{Fn
j∈Gn

1
∑ }+ λ jP{Bnj1

Fn}
j ∈G n

2
∑ + λ jP{Bnj1

Bnj2
Fn}

j∈Gn
3

∑ + ... + λPN / N

ρn = λ j(1 − ρn
j∈Gn

1
∑ ) + λ jQ(N ,ρ,1)ρnj1

(1 − ρn )
j∈Gn

2
∑ +

             λ jQ(N, ρ,2)ρnj1
ρnj 2

(1− ρn )
j ∈Gn

3
∑ + ... + λPN / N

nlj ≡ id #  of the j th preferred unit for atom l
Set μ =1



The last equation gives N nonlinear simultaneous equations in 
the unknown workloads, ρn, subject to the constraint that

ρn
n=1

N

∑ = λ     "normalization"

Typically converges in 3 to 5 iterations, within 1 to 2% of 
'exact Hypercube' results

Response patterns:

fnkj k =
λk

λ
Q(N ,ρ, j −1){ ρnkl

l=1

j −1

∏ }(1 − ρnkj
)

id # of jth preferred
unit for atom k

j-1 more 
preferred
units

jth preferred
unit



Square Root Laws (approximations)

In Chapter 3 we found

E[D] = C
A

N0

depended on distance metric
and location strategy

Area of service region

Number of mobile servers

Assumes all N0 servers are available or free (not busy)



Now consider N to be a R.V.

Might we expect the following to be true?

E[D | N = k] = C
A
k

       k = 1,2,..., N0

What if the locations of servers were determined by a homogenous
spatial Poisson process, with busy servers selected by "random erasers"?



Getting to Expected Travel Distance

E[D] = P0 D0 + Pk
k =1

N0

∑ C
A
k

From M/M/N0
queueing model

where Pk = Probability of k servers available (M/M/N0)



Moving to E[D]

Since P0 0, we can write≅
E[D] ≅ C AEstates of

M / M / N 0

[1/ N ]

We now apply "B-" probability reasoning, to get

E[D] ≅ C
A

E[N]

(Jensen's Inequality shows that this Eq. is a lower bound to true E[D].)



Finishing

E[N] ≈ N0 − N0ρ = N0 (1 − ρ )

E[D] ≈ C
A

N0 (1 − ρ )

E[T ] ≈
C
v

A
N0 (1 − ρ)

+
v
a

Acceleration term

Great results in practice



Jensen's Inequality

If g(X) is a convex function over the region of non-zero probability,
then E[g(X )] ≥ g(E[X])

(Problem 5.5 explores this further.)



Jensen's Inequality
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Suppose 50% of
probability
mass here

And suppose 50% 
of probability 
mass here

"B-" mean (0.426)

1/ N

True mean (0.658)

E[          ]=0.5*(1) + 0.5*(10)-0.5 = 0.5*(1 + 0.316) = 0.658
1/E[N]-0.5 = 1/(1*0.5 + 10*0.5)-0.5 =1/(5.5)-0.5 = 1/2.345 = 0.426

1/ N
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