Spatially Distributed
Queues |l

M/G/1

2 Servers

N servers: Hypercube Queueing Model
Approximations



Setup: Hypercube
Queueing Model

Region comprised of geographical atoms
or nodes

Each node | Is an independent Poisson
generator, with rate 4,

Travel times: 7, = travel time from node |
to node |

N servers
Server locations are random: Inj



Setup: Hypercube
Queueing Model - con't.

Server assignment. one assigned
State dependent dispatching

Service times: mean = 1/, . negative
exponential density

Service time dependence on travel time

We allow a queue (FCFS, infinite
capacity)



Fixed Preference Dispatch
Policies for the Model

ldea: for each atom, say Atom 12, there
exists a vector of length N that Is the
preference-ordered list of servers to
assign to a customer from that atom

Example: {3,1,7,5,6,4,2}, for N=7.

Dispatcher always will assign the most
oreferred available server to the customer

Jsually order this list in terms of some
travel time criterion.




Example Dispatch Policies

SCM: Strict Center of Mass

Place server at its center of mass
Place customer at its center of mass

Estimate travel times: center of mass to
center of mass

MCM: Modified Center of Mass

Place server at its center of mass
Keep customer at centroid of atom

Estimate travel times: center of mass to
centroid of atom



Example Dispatch Policies

EMCM: Expected Modified Center of
Mass
Do the conditional expected travel time

calculation correctly, conditioned on the
centroid of the atom containing the customer



Are fixed preference
policies optimal?

AVL: Automatic Vehicle Location:
dispatch the real time nearest server

This can be incorporated into the Hypercube
framework, but very carefully!

Consider two servers:
JCustomer
| i X |
RA2 RA1




Customer In square

marked X. Place an

asterisk in each square

that could have the

closest server.

Assume each server 1s available
and 1s located 'somewhere' In
his/her square "police beat."



X*







What to know about the
Hypercube Queueing Model

Know the 2-server setup

Be able to work with a 3-server model
Read in the text the formulas to apply

Forget the cases for N>3 servers.

Know Hypercube Approximation
Procedure (still to come -- fasten your seat

belts!)












Hypercube Approximation
Procedure: A General Technique

Want to reduce dramatically the number
of simultaneous equations to solve

The procedure reduces the number of
equations from 2N simultaneous linear
eqguations to N simultaneous nonlinear
eguations.

We look at only those performance
measures we need, not at micro-structure
of the binary state space



Hypercube Approximation Procedure
A General Technique

heory: Sampling Servers Without
Replacement from M/M/N Queue

From M/ M/ N /oo we know the aggregate

state probabilities:
P{S}=P = NP /kI k=012, ,N-1

P{S\} =Py = N"p"R /(N![1- p])

PS = Py <[> Nip!fit+ NV ((NHL— )]



The Hypercube Model,
when the state space Is
compressed from Its cube
In Vdimensions to a 'line’
birth and death process,
always reduces to an
M/M/N queue (assuming
service times are not
server-specific)



Key expression: P{B Bz, +1}
For our applications, we do not need to khowlthe fine grained
binary state probabilities. Rather we need dispatch probabilities and

server workloads.

What about 'B-' probability reasoning?
"Flips coins™ until first Heads is obta{wed: N 1}

pl-p) 1=012,.
P{B,B,,.... B, K.}~ N
L ] =
Incompatible with known state probability P
Doesn't include biases.

Let's "Divide and congquer™:

k=N
P{B, B, B, F.} = D P{B.B,...BF . [SIR ()
k=0




Working carefully and slowly to find the state-conditioned
dispatch probabilities:

P{B, B,.... B, F., [ S}= P{F., | B.B, ... B, 5.}..P{B, | BSIP{B, | S}

N —k k—1
P{B,B,,..B,F.|S}= ——.. —_—
(BB B R |S3= 1= —

Can plug (**) back into (*) and obtain an exact expression.

Manipulate it to obtain a convenient form as "B-" probability
reasoning with an 'A+" correction term:

P{B,B,,...B,F.}=Q(N,p,/)p'(l-p)  (***)

e

"Correction factor"




Explore properties of Correction Factor

The desired dispatch probabilities can be written as a telescoped expression:

P{B, B, ... +1} P{F j+1 | BlBZ"'Bj}P{Bj | BlBZ"'Bj—l}"'P{Bl}

J’

Use above in Eq.(***) to obtain:

.|B..B} P{B|B..B
AN, j) = o *' 25 ' b (P
-p P

i
>1

IN
1



n,; = id # of the j" preferred unit for atom |

g = D AP{R}+ D A,P{B, F}+ > A,P{B, B, F}+..+ AP /N
jeGh jeG? jeGs

o= AL=p)+ D QAN pYp, L-p,)+

j<G; jeG;

> A4QWIN, p2)p, p, (1= p) +...+ AP /N

J eGr?




The last equation gives N nonlinear simultaneous equations in
the unknown workloads, p,, subject to the constraint that

M=

o, =A ‘'normalization”

n=1

Typically converges in 3 to 5 iterations, within 1 to 2% of
'exact Hypercube' results

A _ I
fnkjk — 7 Q(N Yo 1){Hpnk|}(1 _pnkj )
T ITl T
id # of j" preferred fo rle 1[2|?rreed ji preferred

unit for atom k unit

units



Sguare Root Laws (approximations)

In Chapter 3 we found _ _
T/Area of service region

E[D] = C_|—
-v N O\ Number of mobile servers

depended on distance metric
and location strategy

Assumes all N, servers are available or free (not busy)



Now consider NVto be a R.V.

Might we expect the following to be true?

E[D|N =k] = c\/:ﬁ k =1,2,..., N,

What if the locations of servers were determined by a homogenous
spatial Poisson process, with busy servers selected by "random erasers"?



Getting to Expected Travel Distance

N, VK
E[D] = RO, + 2 RCY
k=1

From M/M/N,
queueing model

where P, = Probability of k servers available (M/M/N,)



Moving to E[D]

Since P=0, we can write

E[D] = C"/E‘Estatesof [1/"/N]

M/M/ Ny

We now apply "B-" probability reasoning, to get
A

Y E[N]

(Jensen's Inequality shows that this Eq. is a lower bound to true E[D].)

E[D]=C



Finishing
E[N]= Ny —Nypo=Ny(1-p)

A
No(L—p)

E[T]zCJ A %
T

E[D] ~ CJ

_I_
VYN, (1-p)

Acceleration term

Great results in practice



Jensen's Inequality

If g(X) Is a convex function over the region of non-zero probability,
then
E[9(X)]= 9(E[X])

(Problem 5.5 explores this further.)



Jensen S Inequallty

1/JIN |




E[1/+/N ]=0.5*(1) + 0.5%(10)-°5 = 0.5*(1 + 0.316) = 0.658
1/E[N]°5 = 1/(1*0.5 + 10*0.5)05 =1/(5.5)-05 = 1/2.345 = 0.426

1/JN |
C T \D\True mean (0.658)
L 0 \
+1 2 3 4 5 6 7 8 9 1;)
Supposé 50% of And suppose 50%
probability "B-" mean (0.426) of probability

mass here mass here
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