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Problem 1 (Kang, 2001) 

Let X1 and X2 be independent random variables denoting the two picks that are uniformly dis­

tributed over the interval [0, a]. Let G(a) ≡ E[X2] ≡ E[(max(X1,X2))
2]. Suppose a < X1 ≤ a + ε 

and 0 ≤ X2 ≤ a. G(a + ε) for this case is computed as follows: 

� a+ε � a+ε 
G(a + ε) =  E[(max(X1,X2))

2] =  E[X1
2] =  x 21 fX1 (x1) dx1 =

1 
x1
2 dx1

εa a � �a+ε1 1 3 2 = x1 = a + aε + o(ε),
ε 3 a 

where o(ε) represents higher order terms of ε satisfying limε→0 
o(
ε
ε) = 0. Ignoring o(ε), we have the 

following table that summarizes G(a + ε)’s. 

Case

0 ≤ X1 ≤ a, 0  ≤ X2 ≤ a


a < X1 ≤ a + ε, 0  ≤ X2 ≤ a


0 ≤ X1 ≤ a, a < X2 ≤ a + ε


a < X1 ≤ a + ε, a < X2 ≤ a + ε


Probability of a case 
a · a = (  a )2 a+ε a+ε a+ε 

ε a εa· = a+ε a+ε (a+ε)2 

a ε εa· = a+ε a+ε (a+ε)2 

ε · ε = (  ε )2 a+ε a+ε a+ε 

G(a + ε) given  a case 

G(a)


a2 + aε


a2 + aε


We do not care.


εa 

Using the total expectation theorem, we obtain 

� �2 a 2 εa 2G(a + ε) =  G(a) + (a + aε) + (a + aε) + o(ε2) 
a + ε (a + ε)2 (a + ε)2 � �2 a 2 εa 

≈ G(a) + 2(a + aε) 
a + ε (a + ε)2 

From the formula of the sum of an infinite geometric series, we know 

a 1 ε � ε �2 � ε �3 
= = 1  − + − + · · ·  

a + ε 1 +  ε a a a a 

Ignoring higher order terms of ε, we have  

a ε 
≈ 1 − 

a + ε a 
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� � � 

� � � � 

This gives the following approximations: 

� �2 � �2a ε 2ε ε2 2ε 
≈ 1 − = 1  − + ≈ 1 − 

a + ε a a a2 a 

εa ε a 
�2 ε 2ε ε 2ε2 ε 

= ≈ 1 − = − ≈ 
(a + ε)2 a a + ε a a a a2 a 

Therefore, we can rewrite G(a + ε) as  

2ε 2 ε 2ε 
G(a + ε) ≈ G(a) 1 − + 2(a + aε) · ≈ G(a) 1 − + 2aε 

a a a 

Rearranging terms, we have 

G(a + ε) − G(a) 2G(a) 
= − + 2a 

ε a 

If ε → 0, we have the following differential equation: 

G′(a) =  − 
2G(a) 

+ 2a 
a 

Let G(a) =  Aa2 + Ba + C. Since  G(0) = 0, we have C = 0. From the differential equation, 

−2Aa2 − 2Ba 
2Aa + B = + 2a = (2  − 2A)a − 2B 

a 

It gives A = 12 and B = 0. Therefore 

2 

G(a) ≡ E[X2] ≡ E[(max(X1,X2))
2] =  

a

2 

Problem 2 (Kang, 2001) 

Let X1 and X2 denote the locations of the response vehicle and an event, respectively. 

(i) The probability that the presence of the barrier increases the grid distance the vehicle must 

travel to the event, P (B), is given by (refer to the figure below) 

P (B) =  P (X1 ∈ I,X2 ∈ III) + P (X1 ∈ III,X2 ∈ I) + P (X1 ∈ II,X2 ∈ IV) + P (X1 ∈ IV,X2 ∈ II) 

= 2P (X1 ∈ I,X2 ∈ III) + 2P (X1 ∈ II,X2 ∈ IV) 

8 8 8 8 1 
= 2  · · + 2  · · = 

64 64 64 64 16 
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(ii) Let D be  the travel  distance without  the barrier.  We know  from class  

1 1 16 
E[D] =  E[Dx] +  E[Dy ] =  × 8 +  × 8 =  

3 3 3 

Let De denote the extra distance the vehicle should travel due to the barrier. Let us first 

compute E[De | X1 ∈ I,X2 ∈ III]. There is no extra travel distance in the y axis, i.e. 

E[Dy
e | X1 ∈ I,X2 ∈ III] = 0. We also know from class that the extra travel distance in the x 

axis, E[Dx
e | X1 ∈ I,X2 ∈ III], is 3

2 × 2 =  3
4 . Hence 

4 
E[De | X1 ∈ I,X2 ∈ III] = 

3 

By symmetry, 
4 

E[De | X1 ∈ III,X2 ∈ I] = 
3 

Now consider E[De | X1 ∈ II,X2 ∈ IV]. As before, E[Dy
e | X1 ∈ II,X2 ∈ IV] = 0. To 

compute E[Dx
e | X1 ∈ II,X2 ∈ IV], we should note that it is possible to travel through the 

both ends of the barrier spanning from (2, 4) to (4, 4). We saw in a problem set when travel 

is allowed through the both ends of the barrier, the extra travel distance is 13 times the length 

of the barrier (refer to Problem 3.14 in the textbook). Therefore, 

1 2 
E[De | X1 ∈ II,X2 ∈ IV] = × 2 =  

3 3 

By symmetry, 
1 2 

E[De | X1 ∈ IV,X2 ∈ II] = × 2 =  
3 3 

E[De] is then computed by 
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E[De] =  E[De | X1 ∈ I,X2 ∈ III] P (X1 ∈ I,X2 ∈ III) + 

E[De | X1 ∈ III,X2 ∈ I] P (X1 ∈ III,X2 ∈ I) + 

E[De | X1 ∈ II,X2 ∈ IV] P (X1 ∈ II,X2 ∈ IV) + 

E[De | X1 ∈ IV,X2 ∈ II] P (X1 ∈ IV,X2 ∈ II) 

4 8 8 4 8 8 2 8 8 2 8 8 1 
= · · + · · + · · + · · = 

3 64 64 3 64 64 3 64 64 3 64 64 16 

The expected total travel distance, E[D′], is therefore given by 

E[D′] =  E[D] +  E[De] =
16

+ 
1 

=
259 

3 16 48 

Problem 3 (Odoni, 2001) 

(a) If the PDF of service time is negative exponential, the state transition diagram of Vincent’s 

barbershop queueing system is given by 

λ λ λ 

2 30 1 

µµ µ 

For the case where λ = µ, we have the following balance equations and normalization equation: 

P0 = P1 

P1 = P2 

P2 = P3 

P0 + P1 + P2 + P3 = 1  

Solving equations, we have P0 = P1 = P2 = P3 = 4
1 . The expected number of customers in 

the barbershop is 

6 
L = 1  × P1 + 2  × P2 + 3  × P3 = = 1.5 

(b) Suppose there are k chairs (including the barber’s chair) in the barbershop, which is to be 

determined. The balance equations and the normalization equation in this case are given by 

4 
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� � 

Pn = Pn+1, for n = 0, 1, · · ·  , k  − 1 

P0 + P1 + · · ·+ Pk = 1  

1Clearly, P0 = P1 = · · ·  = Pk = k+1 . To make sure that at least 92% of his prospective 

customers become actual customers, the probability that a new customer finds all chairs 

occupied, Pk, should be less than 8%. 

1 
Pk = < 0.08 ⇒ k >  11.5 

k + 1  

The minimum number of chairs he will need in the shop is 12. 

(c) The state transition diagram for SIRO will be the same as that for FIFO. This means that 

the steady-state probabilities Pn will be identical in the two cases. Then L = 
�
n
3
=0 nPn will 

L Lthe same in the  two  cases.  Therefore,  W = λ� = 
λ(1−P3) 

will be the same. 

Problem 4 (Odoni, 2001) 

(a) The state transition diagram of this M/M/2 queueing system is 

λ λ 

20 1 

µ 2µ 

The balance equations and the normalization equation are 

λP0 = µP1 

λP1 = 2µP2 

P0 + P1 + P2 = 1  

P1 = µ
λ P0 = ρP0. P2 = 2

λ
µ P1 = 12 ρP1 = 12 ρ

2P0. Using the normalization equation, 

1 
P0 + ρP0 +

1 
ρ2P0 = P0 1 +  ρ +

1 
ρ2 = 1  ⇒ P0 = 

2 2 1 +  ρ + 1 ρ2 2 

The expected number of men who are busy serving a customer at any given time is given by 

ρ ρ2 ρ + ρ2 
1 × P1 + 2  × P2 = 1 + 1 = 11 +  ρ + ρ2 1 +  ρ + ρ2 1 +  ρ + ρ2 2 2 2 
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(b) Using the data collected, we have the following equation:


ρ + ρ2 8, 000 
= = 0.8 ⇒ 0.8 + 0.8ρ + 0.4ρ2 = ρ + ρ2 

1 +  ρ + 1 ρ2 10, 000
2 

⇒ 0.6ρ2 + 0.2ρ − 0.8 = 0  

⇒ +ρ2 
1 
ρ − 

4 
= 0  

3 3 

It gives ρ = 1 (the other root, −3
4 , is meaningless). Note that the actual arrival rate of 

customers is λ′ = λ(1 − P2). Since 40,000 customers received service during 10,000 hours, 

40, 000 
λ(1 − P2) =  = 4  

10, 000 

1
2
ρ2 

1Since ρ = 1,  we  have  P2 =
 Therefore
=

ρ2 5 .1
2

1+ρ+

4 4 
λ = = = 5  

(1 − P2) 4/5 

The number of customers lost during these 10,000 hours is 

1 
λP2 × 10, 000 = 5 × × 10, 000 = 10, 000 

5 
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