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Problem Set 6
Due: December 6, 2006

Problem 1
(a)

E F,= E {(indegree of i) — (outdegree of i) }

e eN
= Z[indegree of i) — Z(Dutdegree of )
iEN =N
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Both of the last two sums count every directed arc of the network exactly once: the left-hand sum

from the point of view of the tails and the right-hand sum from the point of view of the heads.
Hence the difference of the two sums is zero (note that every are (4, j) contributes exactly one to

the outdegree of ¢ and one to the indegree of ).

(b) In order to have a directed Euler tour, we must have F; = 0 for all nodes. Parallel to
the undirected version, we add artificial arca (i, j) between supply nodes ¢ £ 5 and demand nodes
7 € D). Unlike the undirected version, where one additional arc was sufficient to make any odd node
even, here it may be necessary to add many arcs to a node whose |F;| is large. In order to minimize
the total length of ares added, we construct 3, ¢ F; minimum distance paths between the supply
nodes and demand nodes. In order to ensure F = 0 for all nodes, we require 3, 75 = F, ¥é € 5.
which implies that

F = F, — outdegree of new artificial ares = F, — z x5 = 0.
jel
Similarly, we require 3, g r; = —Fy, ¥j € D, which ensures that
Pj = Py + indegree of new artificial ares = Fy + z wy =0.
ieg
Here, 2;; represents the numher of new artificial paths between nodes i and j. Since we now have
P/ =10,i¢c 5 and F;i =10, j £ I} we can construct an Fuler tour. It is certainly possible to use a

link more than twice (See, for example, arcs (d,e) and (b, a) in the next part).

(e)
Step 1: § = {b,d.g} with Fy = F3 = F; =1, and D = {a,e} with F, = -2, F, = —-1. By

W

inspection,
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Step 2:

minimizge z =3Tpg + 1T7pe + ldrgg + 3rge + 20r 5, + Orge

subject to Tpo + Tpe = 1
Tda + Tge = 1
Tga + Tge = 1
Thg + Fdg + Tga = 2
The + Tge + Tge = 1
ey = {0,1,2,...}

There are only three feasible integer solutions to this problem, so we enumerate these and

check the value of the objective function in each case:

(1) wpg =1, mpe = 0,240 = L. 2ge =0, 2ga =0, 2ge = 1: 2 =5+ 144+9=28

e

=17+ 14 +20 =51

e

(2) mpg =0, mpe=1,7g, = Lo =0, =1, 2, =0

g

(3) wha =l mpe = 0,249 =0 2ge =1, 290 =1, 2ge =0: 2 =5+34+20=28

e

Both solutions 1 and 3 are optimal. We choose the solution 1.

Step 3: Weadd paths from b— a, d wa (d e —b— a),and g — e (g — d — e). See Figure
2.

-
= g |-
L

Figure 2: Step 3 of Problem 6.6(c)

Stepditb—wa—c—d—c—f—wg—-d—e—g—d—e—b—a—-d—-e—b—a—bis

one possible tour.

{d) The suggested method forces us to traverse every undirected are twice (once in each direc-

tion ), which may not be optimal.
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Problem 2

Let (& be the graph under consideration with node set N. Let = be some point between nodes
p and g. For all 2" £ &, r is reachable from =’ only through p or . Therefore, the shortest path
from x to ' is through either p or g. As a function of =, d(x, =) is a piecewise linear function with
slope +1 at each wvalue of . Similarly, it is easy to see that d{x, p) and d(x, q), as functions of =
are linear with slope £1. Since m(z] = maxjcy d(x, ) by definition, then me(z) is the maximum
of piecewise linear functions each having slope +1 for each wvalue of x. So, m(z) itself iz also a
piecewise linear function of = with slope at each point equal to +1.

Let dip o(p,z) and di, (g, =) be the distances, along link (p, ) from = to p and from = to g,
respectively. Because the slope of m(z) is £1 for each point = on the link (p, g), as we move from
2z =p to z =, m(z) can decrease by no more than dg, \(p, =). Similarly, as we move from 2 = =

to 2 =g, m(z) can increase by no more than dy, o (r, g). That is,

mir) > max [‘?RI:}?:I —dipglp.x), mig) —dipg (. f:":l:l]

> L [m(p) — dipg(pr2)] + 2 [ml) — g (0]

mip) +mlq) — fip, q)

a

The second inequality follows since the maximum of two values ia no smaller than their average.

Problem 3
(a) As suggested, we can prove the results by contraposition. Let’s suppose that the set of nodes T

contains no solution to the 1-median problem. Then, the solution one of S’s nodes. Let y € S be

that node.

Then Iy =2 h(Hd(y. )+ 2 h()d(y. ))

jeT jes
= S h(DI Gy, +d, D+ 3 h(Hd(y, )
jeT jes

= H(T)d(y,t)+ Y h(j)d(t, )+ D h(j)d(y. )

jeT jeS

> H(S)d(y,0)+ Y h()d(t, j)+ Y h(jd(y, ))

jeT jes

= 2 (. )+ Y h(DIA(y. j)+d(y.0)]
= 2 hd )+ 2 k(. j)

=J(t)

This implies that the 1-median could be located at # € T', which contradicts our initial
assumption.
Therefore, the set of nodes T contains at least one solution to the 1-median problem on G(N,A).
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(b) From part (a), we know that there is an optimal solution in T.

VyeT Iy)= Y h()d(y. )+ Y h()d(y.))

= ‘;?(j)d(y, i) +h<il)€;1<y,t) + 2 HIA (0 +d @, ]
= (Z f(j)jd@, )0+ H(S)d o) + 2 )
- ;h(j)d(y, 41+ HSIAD) +Zsh( P, j)
Therefore, we }f:(ve_f) VyeT Iyy=J(y)+C i
where C= )" h(j)d(t, j) does not depend on y
P
nd J)= D MDA, PR +HEMG.D

J is the objective function for the 1-median problem on G'(T', A, ) with the weight of node t
given by H(S)+ h(t).

(c) The isthmus edge (g, i) separates the network into two distinct subnetworks with node sets S; and
T, where:
S;={a,b,c,d,e,f, g h}
T,={i,j,k, L m,n,o,p,q}

H(S;) =32 and H(T,) = 41. Therefore, an optimal solution must be one of the nodes in T;.

We now disregard the portion of the network involving nodes in S; and increase the weight at i to

h(i ) +H (S ) =5 + 32 = 37. Consider the isthmus edge (i, j) which divides the new graph into two
distinct subnetworks with S; = {j, k, I, m} and T, = {i, n, o, p, q}. Clearly H(S,) < H(T,) (remember
that h(i ) is now 37). So, we can disregard the portion of the new network involving nodes in S,. And

again, we must increase the weight at i by H(S,). So, the weight at node i becomes 37 + H(S;) =37 +
17 = 54.

The new network consists only of nodes i, n, o, p, q, and edges between pairs of nodes from this set.
Now consider the isthmus edge (i, n) which divides the new graph into nodes sets S; = {i} and T; =
{n, o, p, q}. H(S3) = 54 and H(T5) = 19. Therefore, an optimal solution to the 1-median problem is to

locate at node i.
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Problem 4
(a) TD, the minimum spanning tree of D, has an even number of odd-degree nodes, like any
undirected network.
Let v be the point in D that is closest to s.
We then have two cases:
- vhad an even degree in TD, or
- vhad on odd degree in TD.

If v had an even degree, then the addition of the edge (s, t) will make v a node of odd degree in T.
This increases the number of odd-degree nodes in the “D part” of the tree T by one. We have an
odd number of odd-degree nodes in R.

If v had an odd degree, then the addition of the edge (s, t) will make v a node of even degree in T.
This decreases the number of odd-degree nodes in the “D part” of the tree T by 1. We then have
an odd number of odd-degree nodes in R.

(b) (i) H adds one more incidence to all the odd-degree nodes in T. Therefore, the graph G has no
nodes of odd-degree. It then has an Euler tour.

(i1) The key observation here is that because of the large additional cost K associated with each
pairing of a point in D with a point in P, there will be only one pairing of an odd-degree point in D
(call it z) with an odd-degree point in P (call it w) in the optimal matching.

(Note that from (a) we know that there will be one “left-over” odd-degree point from D and one
“left-over” odd-degree point in P, after we have finished the pair wise matching of odd-degree
points in D with one another and of odd-degree points in P with one another; please also note that,
by construction, s will always have a degree of 2 in T).

Thus we can begin at s, find an Euler path from s to z that visits all the points in D at least once,
then use the link (z, w) to go to the points in P, and then find an Euler path from w to s that visits
all the points in P at least once.

Problem 5

(a) Initially (in graph R) every wvertex has degree 1 {either inbound or outbound). After the pair-
wise matching is added (graph G2) every vertex has degree 2. Moreover, because heads have been
matched with tails, all vertices belong to (possibly disjoint cyveles, i.e., all vertices can be visited
as part of the Eulerian tour of each separate cycle. The "doubled tree”, T, adds an even number
of meidences (balanced in terms of inbound va. outhbound) to some vertices and connects all the
dizjoint cycles into a single graph, G4. Thus, an Fulerian tour of G4 that respects the directionality

of all direct edges exists.

(b) When k=1, all vertices belong to a single cyele and an Fulerian tour that respects the direc-
tionality of the directed edges can be constructed (see part a). Moreover, the tour is of minimm
length because G4 consists of the union of R {whose length always has to be traversed in its entirety,
by definition ) and of M, which is the most efficient way, by definition, to connect the edges in R in

a legitimate way (heads visited before tails).
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L(G2) = L(DTP)
(equality is certainly true when k=1, from part b)
L(T) = L(DTP - L{R)

Therefore,
LiGA)=L(DTP)+2L{T) < 3LIDTP) - 2L(R)

Problem 6

(a) For L;: according to step 2, the length between city 1 and i ()18 less or equal to

% ( L-2d_. )+ d ... - Therefore:

1

L < ;(L—Zd )+ d,+di 1)

max

For L where j€ {2, 3, ..., k-1}, we have from step 2 that:
)+d

max max *

the length of L between 1 and i ,(; is less than or equal to é(L —-2d

the length of L between 1 and i,,(; ), is greater than (L-2d_ )+d_, .

Therefore, the length of L between #,(;_;),; and i ,(; is less than or equal to é(L -2d .. )

This proves the results since d(l, Lty )+ d(l, L)) ) <2, .

For L, we have

Lk S L - [% (L - 2dmax )+ dmax ] + dmax = %(L - 2dmax )+ 2dmax

(b) From the previous question we have

1 L 1
LTon S—L—Z 2 :_+2dmax 1—_
( 1 g) k ( dmax )+ dmax k ( kj

We know the following:

3
L< EL * (Christofides algorithm)
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LT* < L(T* ) (obvious, since L < kL(T* ))

long long

) (obvious)

Using successively the above three inequalities we have

" L 1
Llr;,) s;+2¢m@—zj
<3 g, [1 _lj
2k k
3 x 1
<5 L(T/,mg )+2d,, (1 - ;)
3 (e . 1
<2l ) ol )1
s(3-1 )

2k

2d_ < LT

long



