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Problem Set #5
Problem 1
{a) One is tempted to say yes by setting p = -J.;‘;‘E = 1'4%3 — & But A = 2 is not the rate at which

customers are accepted into the system becanse we have a loss system. Thus the answer is
no, and we must derive the correct igire. We can use the following aggregate birth-death
process (state transition disgram for an M/M/2 queneing system with no waiting space) to

compute the worldoads:

The balance equations and the normalization equation are

20, = 2F
2P = AR,
Fi+P+RA=1

Solving the equations, we obtain

2 2 1
RB=s A= R=:.
The workloads of server 1 and server 2 are then given by
1 2 L 2
==P +P=_ ==PF +P==.
21 5 1T fa 5 Pz 7 1+ &2 3

(b} The 2-dimensional hypercube state transition diagram is given below. From the steady-state

probabilities computed in part (a) and the symmetry of the system, we have

]

1 1 1
Ppn=F=- P11=P2=E.~ P1u=Pu1=5P1=E-

1
]

The fraction of dispatches that take server 1 to sector 2 is

fae — M p 1 (1_1
= g T T (5 T E
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(c) The mean travel time to a random served customer, T, is abtained hy
T = fiy Ty(sector 1)+ fag Ta(sector 2) + fia Ty (sector 2) + foy Ta(sector 1).

Since the travel speed iz constant, let us first compute the mean travel distance to a random

customer, I

D = fyy Dy(sector 1) + faa Da(sectar 2) + f1o Dy (sector 2) + fay Da(sector 1) .

Using the knowledge of Chapter 3, we have

1 1 2 1 1 2
Dy(sectar 1) = 3tz=73 Dafsector 2) = stz=m

_ 14 _ 1 4

Dy (sector 2)_1+§_§r Dy (sectar l}—l+§—§.

We compute fiy as follows:

A 1 (2 1 3

M Pol——— [242)22,

fii |_’1—P11;|JAI‘PD:'+ o) =132 \5 + 5) 3

Invoking the symmetries, we know
1 3
f21=f12=§1 f22=f11=§-

Putting all together,

=
[ars

15
'§+§'§—El'.llle.

o] =

D= -+

cal L
wal b2

+

o] we
wa] b2

Hence the mean trasvel time to a random served customer s T = WDW hr = 3.0 sec. This



1.203J /6.281J / 13.665J / 15.073] / 16.76] / ESD.216J
Logistical and Transportation Planning Methods

(d)

(e)

means that changes in total service time due to changes in travel time are insignificant and

therefore the Markov models applies. Note that another way to compute D is

2 w1l 2 1 4 2,2 201 4 1 2
p_FowE) (Pt Polg-s+3-3 35 +slz-3+3°3)

Foo + P + Pig -é

] o

In fact, we can obtain this form by simplifving the formula for D above, However, think

about how we can obtain this directly without using the formula for D above.

Consider a long time interval T'. In the steady state, the average total number of customers

gerved is AT(1— Pyy). Server 1 i sent to sector 2 in the following cases:

(1) A customer arrives from sector 2, server 2 is busy, and server 1 is idle.

(2) A eustomer arrives from butfer zone 2, server 2 iz idle outside buffer zone 2, and server

1 is idle inside buffer zone 1.

The average number of customers served by the first case is AaTPp. To compute the average
mumber of customers served by the second case, let us first find the probability that server 2 is
idle outside buffer zone 2 and server 1 is idle inside buffer zone 1. Using geometrical probability
and the independence of the two servers, we know that the probability is Ir%;lql-:lpm Since the
arrival rate from buffer zone 2 is ‘,‘—f the average number of customers served by the second

caze during time interval T is "‘-fT[%]II_’i-}Pm.

Using these quantities, we obtain the fraction of dispatch assignments that send server 1 to
gector 2 under the new dispatch policy as follows:
TR 1 1 3 1 2
, _ MTPo+3T(3)(1)Pw _ 1-g+3 33§ 35

= — —— — 0.1367.
12 31— Py 21— 1) 256 r

fla is greater than fjo = 0.125 as expected. Note that the state transition diagram does not

change under the new dispatch policy (Why? Involee symmetries).

Let T} be the travel time of server 1 to a random customer and T3 be the travel time of server
2 to a random eustomer. Similar to (c), the mean travel time to a random customer under

the new dispatch policy is given by

T' =fi, E[T} | server 1 has been dispatched into sector 1] +
fag E[Ty | server 2 has been dispatched into sector 2] +
fia E[Ty | server 1 has been dispatched into sector 2] +

fa1 E[Ts | server 2 has been dispatched into sector 1].
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But the existence of buffer zones complicates matters. One way to handle this is as follaws:

e Break up fls (and fi) into its two constituent parts and compute a conditional mean

trave]l distance for each

¢ Do the same for f{; and fiq.

o Combine the results for the final answer.
The numerical value is less than that of part (¢), because we tend to dispatch the closer
available server (not always successtul, though).
Although it is not required in the question, let us compute TV exactly. We define the following
events:

¢ CB: A customer is in a buffer mone.

e SADB: Server of the adjacent sector is in its buffer zone.

e SHE: Server of home sector is in its buffer zone.
Let us denote by CB® the complement event of CB, which means that a customer is not
in a buffer zone. Other complement events are defined similarly. Then in the state where
both servers are available, with probability Fay, we have eight mutually exclusive, collective
exhanstive events: (CBNSABNSHE), (CE*NSABNSHE). (CBASAB*NSHB). (CBNSABN
SHE"), (CB®nSAB N SHE), (CEB*nSABNSHBEY), (CBnSAB®mSHBT), and (CB*nSABSM
SHE").
Let us abbreviate these events in binary, for example, (CB 1 SAB mSHE) = (111), (CB* n
SAB N SHE®) = (010}, etc. Then we can write, using the techniques from Chapter 3 for the

conditional mean travel distances,

FyAd+ By +Plﬂ)f%'%+%'%;l

D= \
Fuo + B + Pio
where A4 is
1 1 L 13 11
A= (E-i-z) Pi11o) + [E + (EI + EI)] Pi1on) +
1 11 1 1 3 ) . ; .
(§+E : I) (P(101) +P(111)) + (E +§'Z) (P(010) + P{000)) +

1 1 1 1 3 , .
[3 + (5 T+ Eﬂ (P(001) + P(011)) .

We have :
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(f)

1 1 3 1 3 3 1 31 111
PI]lDJ_ZIZIZ Pr]l:ll:l:l_—_'llzlzi Prlﬂlj—zlzlz1 Pflll:l——-z-z,
a1 3 3 3 3 3 31 11

Plugging all mumbers, we obtain D' = 1281 — 0.82747 < D = £ = 0.83333. The mean travel
time to a random customer is TV = «Bre = 2.9789 sec < T = 3 sec. So, we do get an expected
improvement in mean response distance (time), but not a large one. The fact that we have
more inter-sector dispatches does not necessarily mean that mean response distance (time)

will increase.

First, do not use Carter, Chaiken, and Ignall formula (Equation (5.18)). It only applies when
server locations are fived. The best option is to compute T(x), where  is the location of
a boundary line, and use caleulus to find an optimal value of o (as we did in the 2-server
numerical example in the book and in class). The problem with Equation (5.18) is that T1(B)
and To(B) depend on the location of the boundary line separating sectors 1 and 2. This is
because each available server patrols uniformly its sector while it is idle and thus its travel

time in B depends on sector design.
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Problem 2

(a) With probability 0.3, the emergency occurs on one of the two links incident to the garage
location of ambulanee 2. In this case, the travel distance is 1T{0,1). With probability 0.7, the
emergency occurs on one of the two links not incident to the garage location of ambulance 2. In
this case, the travel distance is U{1,2). Accordingly, as shown in Figure 1, the conditional pdf of
the travel distance for ambulance 2 to travel to the scene of the emergency incident is

o 0.3, de[0.1)
fold) = {0.?__ d e [1,2]

[
E

Figure 1: Conditional pdf of Travel Distance

(b)

The state transition diagram for this system is shown in Figure 2, where first component of
the state indicates whether ambulance 2 is busy and the second component indicates whether
ambulance 1 is busy. We can thus write the following balance equations.
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Figure 2: State Transition Diagram

Fapl034+0.7) = Fii+ P

2Ry = 0TRpp+ Py
2P, = Pio+ P
Fo+Fai+Po+F, = 1
Solving this system, we obtain
2
Fap = -
o
fi
Py = —
0.1 25
4
PFig = —
1.0 a5
1
Py = -
o
Therefore,
11

mo= PBa+Pgy =

pr = Fia+Py =

= =
-'_1|‘-7‘-'_'||

() This i= a straightforward application of Equation 5.18 from the textbook.

2 -
o — Tol B — T (B
&0 I+l £zl ) b))
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where Th(B) gives the average travel time for unit » to travel to a random service request from
anywhere in the entire service region. Note that sy is therefore given in time units. Let us multiply
the RHS through by the travel speed and let Dy (B} denote the average travel distance for unit n
to travel to a random service request from anywhere in the entire service region. We can then write
s as follows, in units of distance rather than time.

S = 5 (Du(B) - Di(B))
By = 01-1.5402-15403-05404.05 = 08
DBy = 01-05402.-05403-1.5404-15 = 1.2
A
= 2—“ =3
s = % = 0.2 km

This means we shift the equal-travel-time boundary line away from the northwest and southeast

corners of the square and toward the northeast corner of the square, but moving only 0.2 km in
those directions.
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Problem 3
Consider a point = on the circumference. In steady-state,
2 a
Pz covered|one car busy) = 50— 70
P{z covered|N cars busy] = 1— Pix not covered by any of the N cars)
11— a W

M
To find the unconditional probahlility, Pix covered), we mmst find out PN cars busy).

Note that the busy cars form an M/G /o0 case since they have Polsson arrivals, general service
time pdf and there are enough cars to answer any number of calls. Therefore,

L

(A )Vew
PN cars busy) = Py for M/G/oo = Fm—
where A = 27 MM\,
Hence,
e v —A
_ B _ il N I:J-_l_:l e H
Pz covered) = Z [1 i1 ﬁﬂ-fj] N1
N=0
Ve N & - s
_A [ YK
= €& # z N _Z A
N=0 N=0 o
Rl e
= ].—.s_-.l'&T[T‘:-:'""':I
_zah
= Plz covered) = 1—¢e &

Using the argument of dividing the total length 27 M mto infinitesimal small mtervals,

2ok

E{length covered) = 2z Ml — ™ v )

alternative solution Since no point 1s specially favored in this problem, expected length that
bemg covered in steady state should be equal total length times steady state of a point being

covered by any one of the cars, 1e.
E{length covered) = 2xM « P(point = 1a covered )
We can apply M/ G/>c model with parameter Ea(:—lj to calculate Pix 1s covered). Hence,
Pz iz covered) =1 - F=1— 6_2“[.%]

Thus, E(length covered) = 2rM x (1— e 2.
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Problem 4

{a) Let us denote the state of the system by a 3-character hist of the status of each server (0
mdicates free and 1 indicates busy), where the status of server 1 1= given by the right-most character
and that of server 3 12 given by the left-most character. Let Fy, denote the probahility that a total

of n emergencies are in the system. By the symmetry of the problem, it 12 clear that

1

Fion = Fopo = Fon = §F1
1
Pio = Pin = PFon = Epz

Since all mean service times are equal, B, can be found by locking at the equivalent M /M /3
system with A = 2 and p = 1. {See pp. 30507 of the textbook for a discussion). From equations

(4.46) and (4.44) 1n the Urban OR textbook, we obtam that
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1
L 1
l+2+2+3(1—§]
B 1 1
Co1+242+4 0
2
P =F = g
2?3
P, = W:ﬂew:‘iﬁ:---}
Furthermore, by the definition of the states, ¢ € {1, 2,3}, we have
1 2 -
.ID'E = §P1+EP2+ZFJ
=3
2 4
= —+—+4+(1-Fy—FA—F
TR TR 0 — P — Py)
2
-3

(b) Without loss of generality (by the symmetry of the problem), we can analyze the mean
travel time by assuming that the call originates from district 1. We will use the Total Expectation

Theorem by conditioning on the following mutually exclusive and exhaustive events
o A: umt 118 available when the call armves. P(d)=1—p = é
o B umt 1 12 unavailable when the call arrives but at least one of umts 2 or 3 12 available.
@
FiB)=Foi+FPm+Fn=3
e " no unit is available when the call arrives. P(C) =1 -F - P — P = %.
Recall that if unit 1 1s unavailable but units 2 and 3 are available, then one of 2 or 3 15 dispatched
to the call. In either case, the expected travel time 15 2 mmutes. Now consider case ©. Due to
the memorylessness of the exponential distribution and the fact that the service time distrnibutions

are the same for each unit, the call s equally likely to be served by any of the three units. So, the

expected travel time in this case is % (% +2+2) = % Putting this all together, we have that

E[T] = E[T|AP(A)+E[T | B|P(B) + E[T' | C]P(C)
— ll_'_zg_'_%i
2 3 9 249
23

— =2 128 minutes

15

() Again, we can condition on events A, B, and &', For event 4, T ~ (0, 1). For event B,
T ~11,3). For event O, T ~ 10, 1) w.p. % {unit 1 becomes free before 2 or 3) and T ~ (1, 3)

w.p. -% jone of unitz 2 or 3 becomes free before umt 1). That 1s
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1, t=][0,1
frialt) = [ .]
0, otherwise
L te1.9
f — R L]
fTIH( ) { 0, otherwise

1
frel(t) = {g :;!E*:&?SE
frit) = frialt)P(4) + fris(€)P(B) + fric(t) P(C)

A
i -
7 te[0.]

= ¢ =, te[1,3]

| 0, otherwise

(d)} Let = denocte a location on the circle, where = € [0,6). Let f(z) be a random indicator

flz) = {

Of course, the value of f{z) will depend on the random locations of the units. The total random

function of a point = where

1
0

T covered

1

otherwize

1

amount of the city that is covered at a random time s given by fué fiz)dz. The average (l.e.
expected) amount of the city that 15 covered at a random time 1s E [fl:? f[z]dr] . Recall that the
expected value of a sum of random variables 1s always the sum of the expected values, regardless
of whether the random variables are independent or not (linearity of expectation). Since the
mtegration mmside the expectation is essentially the same as summation (we're Just summing over

tiny intervals), we have that

E MG f(r]lcfr] _ fﬁ[.f(rj]dr

Li]
= fFI:I covered |dr
il

where the last equality follows from the fact that the expected value of an mdicator function 1=

equal to the probability that the indicator equals 1. Now, it 1= easy to see that P{r covered) may
not be the same for all values of = € [0,6). for instance, if = equals the home location of one of

the units, then the probability of coverage 1= likely to be higher. However, for certain intervals, it

turns out that Pz covered) 18 constant. In particular, we can break our analysis into two cases.
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Firet, let us denve -5, the fractions of ¢ dispatches whose destination is district 7, 4,7 € {1, 2,3}
Note that the 43 are not the same as the fi; defined in the text, since the latter 1= given to be the
fraction of all dispatehes (not Just ¢ dispatches), which take unit @ to district j. We will derive the
~ij from the fi; via renormalization. Hecall that each fi; 15 the sum of a term corresponding to
the fraction of dispatches of ¢ to j that meur no queneing delay and those that do ineur a delay
m quene. For any call delayed in queue (arrives when all of the unita are busy), because of the
memorylessness of the exponential distribution, the call 1s equally likely to be answered by any one

of the three units.

fii = Pieall arr to 1) (P(1 free) + P{all busy, and 1 becomes free first )]

= %(1—p1+%(l—Pn—F1—F2:|)
o111 4y 13
- §(§+§'ﬁ) -
13 :
fu = ﬁﬁze{l:ﬂ:.ﬂ: by symmetry
fiz = P(eall arr to 2) P11n+%Pn1n+%(1—Pn—P1—F2:I)

_ 12,12 14
To3l\ar T2 2739

RER

fis = SR i # j. by symmetry

Sa, to derive the <43, we must renormalize so that the sample space includes only dispatches of

unit i. Again, we can exploit the symmetry of the problem to conclude that

s 13 _
i = — 4t i 01,2.3
ik T+ fizt fis 57 ic{1,2,3}
- _he - 7 Wi £ g
H fu + fia + fia o7 T

Now, we are ready to derive Plr covered). By the symmetry of the problem, we derive this
result by assuming, without loss of generality, that = 1= located within district 1. Now, we need to

consider the following two cases. Let E; denote the event that x 13 covered by unit <.

¢ Case 1: r 1= within % mile of the home location of umt 1.

To explain the entries in the following table, note that a unit located within district 1 covers
x if it 1= in the % mile to the right or to the left of ». Thus, the unit must be in one of two
subintervals whose lengths add to 1 mile. Given that a unit 12 m district 1, its exact location
within the district 12 uniformly distributed. Therefore, given that a unit 1= in district 1, the
probability that it covers r 1= sumply % (zsince district 1 has total length 2 miles). Let )

denote the state in which the number n of emergency calls in the system 1= at least 4.
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States PriEy) | Pr(Es) PriEs) Pr(z covered)

000, 010, 100, 110 1 who cares | who cares 1

001 L 0 0 nL

o w | % 0 (-3 (%)
o w0 [ m | amay
11.Q w | ® | » 103030 %

The probability that = 13 covered, given Caze 1, 12

Pz covered | Case 1) (1—m)+ -P'I:II:IIHr._i.1

Rt (1-50) (1-5))
R 1= (1-5) (1-5))
+ (P +Pe) [1- (1= ) (1-
0.5902

=) (1)

e Case 2: r 1= 1n district 1 but further than % mile from the home location of amt 1.

Without loss of generality, we can assume that r 12 located no more than %

mile from the
district 1-2 boundary (otherwise, the analysis 1s the same but involves districts 1 and 3, rather
tan districts 1 and 2). Suppose that r 1= located m district 1, I umts from the distriet 1-2
boundary. [ ~ 17 (0. ljj

Suppose we are given that [} = d. A unit m district 1 covers = iff it lies in the d units between
o and the district 1-2 boundary or lies in the % mile on the other side of z. Thus, given that
a unit 1= in district 1, and given d, the probability that it covers » 18 -é__._,':—d smnce district 1 has
total length 2 miles. In contrast to Case 1, we now also have that a nmt m district 2 may
cover z, even though = 15 mn district 1. In particular, a unit in district 2 covers = iff it 15 1n
the % — d mile of district 2 that borders on the district 1-2 boundary. So, given that a unit
is in district 2, and given d, the probability that it covers = is Z—.

However, the probabilities that we gave above are conditional probabilities, where we've
conditioned on the distance d of x from the district 1-2 boundary, The correspondimng uncon-
ditional prc-l:-[’d:ni]iEie:-; are as follows. Given that a unit 18 in district 1, the probability that it
covers r 1s Jr,:F 2. ET-H‘Q’-& = %. Sinularly, given that a unit 1s in district 2, the probahility that

1

—I'—i!- i

it covers ris [F 2. I—du= 1.

|
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States | Pr{Ey) Pr(Ea) Pr(E3)
000 0 0 0

001 | Eyy + Ly 0 0

010 0 301 + 2722 0

100 0 0 2731 + §7ae
011 i1+ Lz | o1 + Loee 0

101 %’:rn + 3712 0 S7a1 + 27z
110 0 ,%’:rn + %"rzz 3 a1 + é"raz
11, Q | 31+ smz | 37921 + 5722 | 3781 + 2732

The probability that = 1s covered, given Casze 2, 1

3 1
Plr covered | Caze 1) = Fum ( —11 + Sﬂrlj)

3 1 3 1
+ Foyo (E"rm +§“.r22) + Pyog (g"r:u + 8’*3*)

1 1
+ Fouy [ (l R T g ) (l — gl T g )]
3 L 3 1
P 1 (1 o ) (1= s = )|
3 a 1
+|:P111+FQ:| [1— (l—g"‘rll — "‘rl:\) ( 8 _gﬂrZﬂ)

T
- E"'r&l - E 132

Now, we are ready to compute the average length of the city that 15 covered at a random time.
Note that there are 3 miles of the aity that fit Case 1, namely the three 1-mile strips centered at
each home location. At any point on these 3 miles, the probability of coverage 13 0.5902. The
remainmg 3 miles of the city fit Case 2. The probahility of coverage for any point along these
remaining 3 miles 1s 0.2697. Let “ [ " denote that we mtegrate over points along the city that
fit Case k, for & £ {1,2}. Therefore, the average length of the city that is covered at a random

E Uﬂﬁ flz)de

time 1= given by
6
/. Pz covered)dx
0

(1.5902 f dr + 0.2697 f dx
Casa 1 Cass 2
= 3(0.5902 4+ 0.2697) = 2.5797

—
I

Problem 5
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a) We are in the case of congestion pricing.
Type 1 customers: A, =30 /hr and ¢, = $2/min = $120/hr

Type 2 customers: A,= 24 /hr and ¢, = $3/min = $180/hr
Thus A= A, +A,=54/hr.

1
And for both types of customers: E[S] =1 min= % hr and 04=0.

The total cost is given by C = c w,.

1
. 2y 54— +0)
with w, = AEISITO5T_ 760" T g5y
2(1 - ,0) 2(1 — ﬁ)
60

Therefore, the cost is:
C= (cl/l1 +cz/7,2)Wq = (120%x30+180x24) x0.075 = $594

b) The marginal cost MC, for Type 1 customers is given by

-dw
MC,= dc _ e W + c—
dAi, 0 dA

The first term gives the internal cost, and we have Cqu = $9/hr.

The second term gives the external cost and we have:

—dw, E’[S] , 1 ZE[S]

c—=L=(c A +c,A =$110/hr.
e !
dc -dw,
For Type 2 customers, we have MC,= ——= ¢,W_+ ¢—
dA, Y]

The internal cost is ¢,W, = $13.5 /hr.

q

The external cost ¢ is the same as for Type 1 customers: c d/; =$110/hr.

The external cost is the same because the service time for the two types of customers is the same.
L 1 . 1
c) Let S, be service time of Type 1 customers: E[ ;] = — = 0.5 min = Ehr.

1

1 1
Let S, be service time of Type 2 customers: E[ S, ] = — = 1.625 min = T&O hr.

For the entire set of facility users, we have:

A = 54/hr —=E[S]=—+2— = —nhr
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A A A 440
p=;=0.9 C=71C1+72C2=T$/h1'
AE?[S]+0%]
20-p)

hr, thus the waiting time is given by:

The total cost is given by C = ¢4 Wq , with Wq =

% = - _ =
Au A u, 19200

54
w - ME’IS1+05]_ AEIS*] _""11520 _ 63
T 2-p) 20-p) 2(1-0.9) 640°

and C = ﬂ X 54X ﬁ =$720
3 640

d) The same calculations as in part b) give us:

Type of Marginal Cost ($)
customers] Internal | External

1 11.81 67.72

2 17.72 240.2

Now, the external costs are different. The external cost is higher for Type 2 customers because
their service time is higher.

¢

E[S, ]

e) Type 1 customers should be assigned priority because the ratio f, = =4 $/min is greater

that Type 2 customers’ ration f,= 1.85 $/min.

f) Let’s compute the total cost of waiting at the facility per hour, given that Type 1 customers
have the priority over Type 2 customers.

C= AW, + c, W,
_ AESI+AES]] AES, 1+ LE’[S,] 63

Wo = 2 2 ~ 6400
W, Wy _ Wy _ W, _ 21
l—a, 1-p, l_i 1600
H,
W W, ) W, _ 21
2 (1-a)(1-a,) (1—i)(1—ﬁ—ﬁ) 160

1 1 2

Therefore, C = iﬁ =$614.25/hr

This is a 14.7% improvement compared to the cost in c).
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g) We have the two rations f; =4 $/min and f,= 1.85 $/min. Since f,> f,, Type 1 customers

should be assigned priority, in order to minimize the expected cost of the total time that the all
customers spend in the system.

h) The service times are no longer deterministic. Therefore, the expected waiting times will
increase.

_ AESI+AES]] A (E’S, 1+05)+ A4 (E’[S,]1+05,) 63
- 2 - 2 3200

much as previously.)

W,

(This is twice as

w, W, W, 21

W = = = =
“l-a, 1-p ;A 800
M,
W, W, 21

W ) = = = —
“ (-a)(l-a,) (1_i)(1_i_ﬁ) 80
H 1 2
The waiting times are twice as high as in part f), therefore, the cost is going to be twice as
important as in f):

C= AW, + c,,W ,=$1228.5/hr



