Logistical and Transportation Planning _ Fall 2006

Problem Set 3

Due: Thursday, October 19

Problem 1

(a) If Bo did not have to wait, then he arrived while the system was empty. For an M/M/1
queueing system, the probability to be in the state with no customer is:

E=1-p withpzi.
Y7

If Alvin had to wait, then Bo was still in service when he arrived, since no customer
can go into the building between Bo and Alvin’s arrivals. The probability that Bo’s
service is longer than 2 minutes is ¢ >* . Therefore, the probability that Bo did not
have to wait at all for the service but that Alvin did have to wait is:

P= (1 —ije-zﬂ =0.2696
U

(b) The probability that Bo finds 8 customers is the steady state probability of their being
8 customers in an M/M/1 system at a random point in time. This is just p*(1—p). If
only one customer is in service when Alvin arrives, then it must be Bo. This means
that in the two minutes between Bo and Alvin’s arrivals exactly 8 departures must
have occurred from the system. Since we are talking about the departure process of
customers already in the system we can think of them as departing according to a
Poisson process of rate 4.

Therefore the probability of exactly eight customers leaving during the two minutes is
the probability of having 8 poisson occurances in two minutes which is given by:

2 8 2u ) ) .
—( #) ‘e . Plugging in our known values of A= 0.4 customers per minute and

1 =1 customer per minute. We get that the probability of the event described in part
(b) is:

8 2u
)M ~339.10~7

8
pil-p o
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FProblem 2
By Armann Ingolfsson 93

The state transition diagram is

0,3

1 1.25

(i.j) - itaxis and j passengers waiting

Note that if there are taxis waiting, then no passengers will have to wait, and if
there are passengers waiting, it must be because there are no taxis available. Thus,
states Lhat have both ¢ > 0 and ;7 > 0 are not possible.

The balance equations are

moa(l) = mo2(1.25) = mop = (0.8)mp3
moa(l) = moa(1.25) = moy = (0.8)mo2 = (0.8)*mo3
moa(l) = mop(1.25) = mo0 = (0.8)°mo3

mi-10(1) = m;0(1.25) = w0 = (0.8)mi—10 = (D.S)H:‘m}‘a

Since ¥, ; wi; = 1, we have:

ac o
o3 + T2 + 7o, T+ Z Tio = To3 Z(OS)' = o3 =1 =" T3 = 0.2

1
i=l i=0 1 - 08
o3 = 0.2, mo2 = (0.8)(0.2), o1 = (0.8)%(0.2), mip = (0.8)""%(0.2) fori=0,1,2,...

(a)

E[# of taxis waiting] = i iMig = i-sw.sr“{o.z) = (0.8)" fj i(0.8)-4(0.2)
i=1

=1 =1

= (0.8)'E[geometric r.v. with p = 0.2]

(0.8)'(1/0.2) = G)' b= 2—"3 ~ 205

Page 2 of 12



Logistical and Transportation Planning _ Fall 2006

(b)

E[# of passengers waiting]

3
Zj:'.’oj = l‘.“l’ull + 211‘0‘3 -+ 3?70'3
Jj=1

= 2 i ‘ — _16 i E
= (0.8)(0.2) + 2(0.8)(0.2) + 3(0.2) = TR - % + 5
131
= —=1.05
325 = 108

(¢) Let N be the number of passengers that leave in one hour because they arrive
when there is no more room, i.e., the system is in state (0, 3), and let T" be the
amount of time in one hour that the system is in state (0,3). Assuming steady
state, we have

E[N]

/:‘E[N}T = U] fr(t)dt = /:U ALfp(t)dt = A /:atfr(f.)rft
AE[T] = (1.25)(70.3)(60) = (1.25)(0.2)(60) = 15 passengers

By Armann Ingolfsson 03

To be consistent with the notation of the problem, we'll use {P;} for the steady
state probabilities, instead of {7;} as in the previous problem.

The state transition diagram for any Markovian (i.e., memoryless) queue looks as
follows

P4 k2 13 B4 B Frit
A
() &) ;
\H-—"f
Lo LR to Ag AnA An

The only difference between such a quene and an M/M/1 queue is that here the
arrival and service rates are allowed to depend on the state of the system. The balance
equations are

PX=Ppting = Py = ipi fori=0,1,2,...

i1

LY T |
202 Mo fori=1,2...
F LN L e 0|

The equation 3_5° P, = 1 can then be used to solve for F.

= B
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(a) Applying the general formula, we have

_OOHNVGE-1))--- ), M)
AD"— (“) ‘u) ﬂ,) Po— i Pg fo r—O,l.... [1)

Then
XP Poz(’v“ PoeMt = 1 = Py = ™M

(,\g;) -

=P, = fori1=0,1,...

So we see that in steady slate, the number of customers in the system follows
a Poisson pmf, with mean A/u. The fraction of time the server is busy, p, is
equal to | — Py = 1 — e %, The system reaches steady-state as long as

pLlel—eMclase>s08 M <

So all we need to require is that A < oc and p > 0.

(¢) Since the pmf for the steady state number of people in the system is Poisson with
mean A/, we have L = A/u. By Little’s law, we have L = AW, being careful
to remember that we must use the average arrival rate A. The average arrival
rate can be computed as

G

x A (Mu) oM
A _ZAP ZH—] g

" He-.\;uz(»\/#]”'_ _,\mz(,\/p)'

=G+

Hence,

A A

“‘*’. =L N -
A= M=) = = o)

A tempting, but wrong way to compute W is to say

WAZ( - )P,‘ =-(L+l)——{-“'1)

k=0
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The reason that this approach is wrong is that the probability that a randomly
chosen customer arrives when there are £ customers present in the system, say i, is
not equal to the steady state probability Py that there are k customers in the system.
In fact,

@ = Pr{k customers present when randomly chosen customer arrives}
# who arrive while there are k present
total # of customers who arrive over a long period [0, T
(length of time there are k present) x A
AT

Using Q. instead of P, in the summation above, we get the correct answer. There
is a theorem, called PASTA (Poisson Arrivals See Time Averages), which states that
if the customer arrival process is Poisson, then Qp = P. In this case, the arrival
process is not Poisson, because the arrival rate changes with the state of the system.

Problem 4
By Armann Ingeolfsson ‘93
N(t) = # of broken down buses at time ¢
Then

Pr{N(t + At) = N(t) + 1} = 1At + o(At)
(buses break down at a rate of one per hour) and

Pr{N(t + At) = N(t) — 1} = p(N(t))At +o(At)
where the “unction p(N(t)) is determined by:

(1) The total number of mechanics employed, k, and

(2) The assignment of mechanics to the N(t) broken down buses

The problem is to make decisions (1) and (2) to minimize expected cost per hour,
E[C]. The cost C per hcur consists of

C

Il

wages + cost of buses not in service

1
$10k + $40 ]‘; N(t)dt
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In steady state, we have

E [ /i ' N(t)dt] = 1%

where N is the average number of broken down buses, so
E[C) = 10k + 40N

The number of buses N(t) behaves according to a discrete state Markov process
with a transition diagram which is identical to the one in the last problem, with
A; = 1 and y; to be determined.

(i): Service rate proportional to k. Suppose that k, the total number of mechanics,
has been decided upon. Recall that the steady state probabilities for N(£) will
be

e, O

ﬂ‘l 2 b
Suppose I were to increase service rate ;. Then Py, P,. .., Pj_; would increase,
and P, Pjy1,... would decrease, so N = ¥ iP; would decrease. Since I would
like to minimize N, it must be optimal to make all service rates y; as large as
possible. What this means is that whenever one or more buses are broken, all
mechanics will be working, so u; = (1/2)k for i = 1,2,.... Note that it makes
no difference whether all £ mechanics finish reparing the first bus to break down
before starting work on the second bus to break down, or whether they split up
when the second bus breaks down. Since y; is constant, this is equivalent to an
M/M/1 queue, for which ¥ = A/(u = A) = 1/(k/2 = 1) = 2/(k — 2) (thus, k
has to be at least three for stability), so

R

. 80
EC] = 10k + %

Differentiating with respect to k and setting equal to zero we get

_ 8
(k —2)?

Thus the optimal number of mechanics must be either four or five. We have

E[C]|;-, = 80 and E[C]|,_; = 76%

10 =0=>k=2+V8~48

so k* = 5 minimizes cost per hour.
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(ii): Service rate proportional to k. In this case, it does make a difference whether
all mechanics work on the same bus, or split up to work on several buses. For
example, if k¥ = 4 mechanics are available and 2 buses are in for repair, then
the overall service rate depends on how the mechanics are assigned to buses as
follows:

Assignment  Owerall service rate, p,
440 VA1/2) =1
3+1 (V3 + V1)(1/2) = 1.366
242 (V2 +v/2)(1/2) = 1.414
So for this case, it is best to assign two mechanics to each bus. One could
perform this analysis for £k = 1,2,... and i = # of buses = 1,2, ..., find the
best assignment for each case, and compute E[(] for each k. The answer turns
out to be that £* = 5 again minimizes expected cost per hour at 5 94.20. Rather
than go through this tedious analysis, suppose we assume that the crew cannot
be divided up. Then the service rate will be j; = (1/2)vk, and
N=Mu-2=1/(VE/2-1)=2/(Vk-2)

Now we see that k& > 4 is required for stability, and

. 80 IE[C] 80 1 .
E[C] = 10k+ = =10-————— =0= Vk(VE-2)’ =4
c] V-2 ok (VE - 2)22vk [ )

By trial and error, we find that k& = 9.8, Since

EIC]|,_, = 170 and E[C]|,_,, = 168.83

the optimal crew size is £® = 10,

Problem 5

For each scenario, the total cost per minute is 7C;, =1- L, + C;, with i =10r 2. We have
to find the expected number of cars for each scenario.

If there is only one server, the system can be modeled as an M/M/1 system with infinite
capacity. According to the formula derived in class we have

L=t Y40

T4 115140

If there are two parallel servers, the system can be modeled as an M/M/2 system with
infinite capacity. The corresponding state transition diagram is the following:
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A A A A A
78 2u, 24 2u, 24

AR, = 1, P y)
AP, =2u,P, i =ﬂ—2Po
AP, =2u,P, thus et
: Pnz(ﬂ] P fornx1
AP, =24, P, -
) 1_ 2
ZPz =1 = K= 2132 :%
i=0 1+
24,

Now, we can compute the expected number of cars in the system:

n—1
L,=>nP, :Plzn( 4 ]
n=l

n=l1 2#2

Let’s have a = , then
24,
d [« d o 1
L =PYna"'=P—|Ya"|=P— -p
? IZ lda(; j lda(l—aj "1-a)

Therefore L, =;21PO =0.87

1= A j “

24,

If the two total costs are equal, then: C,-C, =L, -L, =027 = C,>C,

Problem 6
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(a) The state transition diagram of this M/M/2 queueing system is

¥ A
\M___,_,f ‘ll..‘___‘_./
W 2n

The balance equations and the normalization equation are

APy = pPy
AP = 2uP,
P+ P+ P=1

P = ;—}Pg = pBy. Py = E%Pl - 15- PP = -’Ep2P0. Using the normalization equation,

1, 1 4 1
+pPy + =p“Py = l4+p+=p)=1 = FPy=—————
Py + pPy 5¢ Fo Po( P 2P) ) TTpr P

The expected number of men whe are busy serving a customer at any given time is given by

2
I1x P +2x Py= P S 2 = Jed

T+p+307 1+p+30° 14p+ 307

(b) Using the data collected, we have the following equation:

p+ P 8,000

=08 = 08+08p+04p°=p+p*
L+p+gp® 10,000

= 0.6p°+020-08=0
s 1 4

= —p——==10
P +3P—3

It gives p = 1 (the other root, —4. is meaningless). Note that the actual arrival rate of

customers is A" = A1 — Py). Since 40,000 customers received service during 10,000 hours,

40,000
Al= )= 10,000 *

Since p= 1, we have Py = 1+p:= = % Therefore
4 1,
dal ey by A

The number of customers lost during these 10,000 hours is

1
AP; % 10,000 = 5 x — x 10,000 = 10,000

o
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Problem 7

(a) The state, &k, can be thought of as the number of service phases. It 1s not
equal to the number of customers in the system. The system is busy when in

states 1 or 2. Hence,

eI Pi+Ps
server utilization factor = =————
Po+P;+Py
The steady state equations are:
Po:A = Py

Pyop = Pyop
Po-X = Py-p
P0+P1+P2 = ].

This implies that the service utiilization factor

%-Po+ﬁ--Pn 2
Po+2-Po+2 Py p+2A

p=
(b) Again, % is the number of service phases to be completed.
/’é\ o )—s /)}'-» o
6 o sol @ ® - B _O_
o e LR

(¢) The steady-state equations are:

P, = ZPg
A (A
- (2
)\
2
XX fa
= ()
p) \m

‘ ' Y FAX™
o ()
i) \p
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and 377 4 Py = 1. Solving for Py in this last equation, assuming f—‘ < 1, we get

1 -2
Po= ‘{
1+ 2
Server utilization is then
2)
1-Pyp=—
i+ A

(d) The fraction of customers who experience the Erlang order 2 service time is
she fraction of customers who arrive to an empty system. Hence this fraction

s equal to Py.

(e) If a customer finds the system in state 0, then the service time has a mean of £
J7i

minutes. For all the other states, the service time has a negative exponential probability

1
density funetion with mean e Therefore, we have two cases to consider:

2 1 2
Efr,, .. ]=p=+1-B)—=——
[.-rmoe] Oﬂ ( o)ﬂ ﬂ-l'/?.

Exira Question:

Given k service phases to be completed, W, is equal to ﬁ- Hence,

. - ek y
W, = S (Wk)Px=Y —Pr=—3 kP
k=0 k=0 K H=o
S @) (+3) B (o2) () -
K K wj AR w) \p
= —Po|{14+—](14+2()+3()+:-+]) =1
J i L i3

(“3) ((1 —%ﬁz"-) ‘1}

——
—

3= |

® |=w |
S———
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The other quantities follow suite:

L, = AW, ,
W = W,+Wsp=W,+——

q+ SF q+ 7 +'\
L = AW
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