URBAN PUBLIC TRANSPORT MODAL CHARACTERISTICS AND ROLES

Outline

- Range of Modes and Services
- **Modal Descriptions**
- **Modal Comparisons and Performance Characteristics 3.**
- **Simple Capacity Analysis**

Roles for Each Mode

Spectrum of Services

Increasing vehicle capacity ----> Increasing passenger flows ---->

Vehicle Type Operating Arrangements	Car	Va	an	Minibus	i	Bus	Light Rail	Heavy Rail
Drivers	Free		Low Cost			High Cost (conventional transit)		Low cost (automated)
Right of way		Shared			Dua	al Mode	Dedicated	
Routing and Scheduling	Flexible	е	Hybrid			Fixed		

Transit Categories (based on Vuchic)

Rights of Way

Based on degree of segregation

- Surface with mixed traffic: buses, light rail: with/without preferential treatment
- Longitudinal separation but at-grade crossing interference: light rail, bus rapid transit
- Full separation: at-grade, tunnel, elevated

Modal Descriptions

Bus: vehicles operating individually with rubber tires, with manual lateral and longitudinal control

Key decisions:

Vehicle size: minibus (20 passengers)

up to bi-articulated (165+ passengers)

Vehicle design: high floor or low floor

Right-of-way: all options are available

Guidance: is guided operation appropriate at some locations?

Propulsion: all options available

Fare payment: on-vehicle or off-vehicle

Modal Descriptions (cont'd)

<u>Light Rail</u>: vehicles operating individually or in short trains with electric motors and overhead power collector, steel wheel on steel rail with manual or automatic longitudinal control

Key decisions:

- Vehicle design: high floor or low floor, articulated or rigid body
- Right-of-way: all options available
- Operating arrangements: automated or manually driven

Modal Descriptions (cont'd)

Heavy Rail/Metro: vehicles operating in trains with electric motors on fully separated rights-of-way with manual signal or automatic longitudinal control; level boarding, off-vehicle fare payment

Key decisions:

- Train length
- Right-of-way: at-grade, elevated, or tunnel
- Station spacing
- Operating arrangements: degree of automation

Modal Descriptions (cont'd)

Commuter Rail: vehicles operating in trains with long station spacing, serving long trips into central city, large imbalance between peak hour and other period ridership.

Traditional Transit Services

- Bus on shared right-of-way
- Streetcar on shared right-of-way
- Heavy rail on exclusive right-of-way
- Commuter/Regional rail on semi-exclusive right-of-way

Newer Service Concepts

- **Bus Rapid Transit**
- **Light Rail on exclusive right-of-way**

Increasing Diversity

- Driver arrangements: part-timers, 10-hour days, pay by vehicle type
- Routing and scheduling: fixed, flexible, advance booking
- Vehicle types: minibuses, articulated buses and railcars, bi-level railcars, low-floor
- Control options: fixed block, moving block, manual, ATO, ATC
- Priority options: full grade separation, semi-exclusive right-of-way, signal pre-emption
- Dual mode operations: bus, light rail

Modal Comparison: Bus vs. Rail

Rail advantages:

- High capacity
- Lower operating costs
- Better service quality
- Stronger land use influence
- Fewer negative externalitites

Bus advantages:

- Low capital costs
- Wide network coverage
- Single vehicle trips
- Flexibility
- "Dual mode" nature

2004 US Transit Mode Performance Measures

	Bus	Heavy Rail	Light Rail	Commuter Rail	Paratransit
Unlinked Passenger Trips (x 10 ⁹)	5.7	2.7	.3	.4	.1
Annual Pass-miles (x 10 ⁹)	21.4	14.4	1.6	9.7	1.0
Op. Cost/ Rev Veh Hr (\$)	93.91	154.31	206.08	403.27	47.52
Op. Cost/Rev Veh Mile (\$)	7.45	7.58	13.32	12.80	3.29
Op. Cost/Unlinked Pass Trip (\$)	280	1.72	2.54	8.31	22.17
Op. Cost/Pass. Mile (\$)	.75	.33	.56	.35	2.62
Unl. Pass Trips/ Rev Veh Hr	33.60	89.56	81.26	48.53	2.14
Pass Miles/Rev Veh Hr	125	468	366	1139	18
Mean Trip Length (miles)	3.7	5.2	4.5	23.5	8.5
Mean Pass Load	9.9	23.0	23.7	36.1	1.3
Mean Operating Speed (mph)	12.6	20.4	15.5	31.5	14.4

Ridership Trends by Mode

М	ode	2003 Ridership (Millions)	Change 1975-2003 (%)	
Metro	- 5 old systems - 9 new systems	2,199 468	575 (+35%)	
Light Rail	- 7 old systems - 20 new systems	166 172	42 (+34%)	
Commuter Rail	- 4 old systems - 17 new systems	377 33	126 (+49%)	
Bus		5,692	-2 (0%)	
Total		9,107	1,414 (+18%)	

Simple Capacity Analysis

Question: Given a pie-shaped sector corridor serving a CBD served by a single transit line, what will be the peak passenger flow at the CBD?

Simple Capacity Analysis

Given: P_c = population density at CBD

dP = rate of decrease of population density with distance from CBD

 θ = angle served by corridor

r = distance out from CBD

L = corridor length

t = number of one-way trips per person per day

c = share of trips inbound to CB

m = transit market share for CBD-bound trips

p = share of CBD-bound transit trips in peak hour

Then:

$$\int_{0}^{L} r\theta (P_{c} - dPR) dr$$

$$= L^2\theta \left(\frac{P_c}{2} - \frac{dPL}{3}\right)$$

Simple Capacity Analysis

Peak Passenger Flow =
$$L^2 \theta \left(\frac{P_c}{2} - \frac{dPL}{3} \right) tcmp$$

Maximum access distance to transit line = $L\Box/2$

Examples:

P_c	dP		L	t	С	m	p	Req. Capacity	Max Access
10,000	800	2 Π /9	10	2.5	0.2	0.5	0.25	10,000	3.5
20,000	1,600	2∏ /9	10	1.5	0.3	0.8	0.25	30,000	3.5

Actual Capacities

Rail: 10 car trains, 200 pass/car, \equiv 60,000 pass/hr

2-minute headway

Bus: 70 pass/bus, \equiv 8,400 pass/hr

30-second headways

BRT: 200 pass/bus, \equiv 36,000 pass/hr

20 second headways

Light rail: 150 pass/car, \equiv 18,000 pass/hr

2-car trains, 1-minute headway

MBTA Rail Line Peak Hour Volumes

Red Line:	Braintree branch	6,100
-----------	------------------	-------

Ashmont branch 3,700

Cambridge 8,200

Orange Line: North 8,100

Southwest 7,400

Blue Line: 6,000

Green Line: B 2,000

C 1,900

D 2,200

E 900

Central Subway 6,500

Worldwide Urban Rail Systems

A. Full Metro Standards

Started system operation	N. America	Europe	Rest of World	Total Starts	Cumulative Starts
Pre 1901	2	5		7	7
1901-1920	2	4	1	7	14
1921-1940		4	2	6	20
1941-1960	1	5	1	7	27
1961-1980	3	17	12	32	59
1981-2000	3	4	12	19	78
Post-2000 or In Construction	1	7	5	13	93
TOTALS	12	47	32		

B. Light Rail Systems: total in operation

	N. America	Europe	Rest of World	Total
Total Systems	22	50	15	87