
Quiz #1 
Solutions 

Problem 1 

Define the following events: 

D: dangerous conditions 
Dc: normal conditions 
T: alarms indicated dangerous conditions 
Tc: alarm indicates normal conditions 

Given: 

P[T | D] = 95 0. P[Tc | D] =  05 0. 

P[T | Dc ] = 005 0. P[Tc | Dc ] =  995 0. 

P[D] = 005 0. P[Dc ] = 995 0. 

(a) Probability of false alarm: 

P[Dc | T] = P[Dc ].
P[T | Dc ] 

P[T] 

P[T] is found using the Total Probability Theorem as 

P[T] = P[T | P].D [D] P + [T | Dc P]. [Dc ] 

Therefore, 

P[Dc | T] = P[Dc ].
P[T | Dc ] 

= 0.5116
P[T] 

(b) Probability of unidentified critical condition: 

P[D | Tc ] = P[ ].D P[Tc | D] = 0.0002525 
P[Tc ] 

(c) Number of False Alarms = P[Dc | T] × P[T] × 365 × 10 = 18 times 



     Number of unidentified dangerous conditions= P[D | Tc ] × P[Tc ] × 365 × 10 = 1 time 

The alarm system therefore gives 18 false alarms in the 10 year period , which can be a 
hassle. It does however fail to identify only one dangerous condition, so performs well 
here. Good alarms aim to minimize false alarms and eliminate unidentified conditions.  

Problem 2 

(a) The answer to this question is somewhat subjective, and so will be different 
depending on who answers, but here are a few ideas that should be included.  

The three conditions that a point process need to satisfy to be Poisson are: 

1.	 Stationarity. The probability that an event in a short interval (t, t + ∆t) is 
approximately λ(∆t) for any t. 

2.	 Non-Multiplicity. The probability of two or more events in (t,t + ∆t) is negligible.  
3.	 Independence (No Memory). The number of events in an interval of time is 

independent of the number in any other interval of time.  

If one wants to model flood-producing storms as a Poisson process, they need to satisfy 
these three conditions. If one assumes that flood-producing storms are rare, and occur 
randomly in time, then one can argue that: 

The condition of stationarity is satisfied, since the longer the time period one considers, 
the more likely a storm will occur.  

The condition of non-multiplicity is satisfied because storms don’t occur at the same 
time.  

The most difficult condition to satisfy is that of independence. This assumes no memory, 
but weather patterns typically exhibit some persistence, i.e. seasons, and therefore do 
show dependence. 

Assuming Poisson storm arrivals with , λ = 1/20 years. 

Define: 

Y: the number of storms in time, t. Y is a Poisson variable with PMF: 

(λt)y e λ − t 
PY (y) = 

!y 



The probability that the water height exceeds 3 m is given by: 

3 
P[h > 3] = 1 - FH( 3) = e 2 

The original Poisson Process is thinned with probability P[h > 3] to result in a new 
thinned Poisson Process for storms that cause the water height to exceed 3 m. The new 

*rate of the process is λ = λ P[h > 3] . 

Define: 
* * Y : the number of storms that cause water heights to exceed 3 m in time, t. Y  is a  

Poisson variable with PMF: 

* ** y* (λ t) e λ − t 
PY* (y ) = 

* y ! 

The probability that that the water height will exceed 3 m at least once during the next 
100 years is given by: 

* 
P [At least one storm occurrence] = 1 – P [No storms] = 1 - P * ( 0) = 1 - e λ t = 0.672

Y 

Problem 3 

Given the joint density f X , X 2 ( x , x 2 )  is uniform inside the disk.  1 1 

(a) The value of f X , X 2 ( x , x 2 )  is obtained from knowing that the total volume 1 1 

under the f X , X 2 ( x , x 2 ) cylinder must be equal to 1.  1 1 

Therefore, 

Volume = f X , X 2 ( x , x 2 ) × πr 2 = 1, and1 1


1

f X , X 2 ( x , x 2 ) = inside the disk,1 1 π 

f X , X 2 ( x , x 2 ) = 0 elsewhere.1 1 

X1 and X2 are not independent. 



For X1 and X2 to be independent, fX 1 X , 2 ( x , x 2 ) = (x 1 )1 fX 1 fX (x 2 )
2


1

Since, fX 1 X , 2 ( x , x 2 ) =  cannot be expressed as the product of two functions. So, X11 π 
and X2 are dependent. 

(b) The marginal PDF of X, fX (x 1 ) is obtained by integrating the joint density over all
1
X2. 

∞

∫
f (x ) =X1 1 f
 dx2( x , x )1X1 X , 22 
-∞ 

The limits of integration are given by the value of X2 at any X1: 

1 x1
2 , and so:x2 ± = -

1 

1 

1 

− 

− 

2
x1 
2 2x1 = ∫
  for −fX1(x1) fX1 X , 2 (x1 x , 2 )dx − 1 x1 1≤ ≤=2 π 

2
x1− 

fX1(x1) = 0 otherwise 

Problem 4 

By Linearity of expectation: 



E[ Y 1 ] = E[ X 1] + E[ X2  ] = 2m 

E[ Y 2 ] = 2.E[ X 1] = 2m 

Using second moment analysis 

Var[ Y 1 ] = Var[ X 1] + Var[ X2 ] + 2Cov [ X 1, X2 ] = 2 σ2  because of independence. 

2Var[ Y 2 ] = 2 Var[  X 1] = 4 σ2 
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, and so Cov [ Y1, Y2 ] = 2 σ2 .
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