
1.124J Foundations of Software Engineering

Problem Set 2 - Solution

Due Date: Tuesday 9/26/00

Problem 1:[10%]

1. Which of the following functions, whose declarations are given below, will be called:

float myF;
 printMyF(2.0*myF);

b. 	void printMyF(double)

2. If you declare members inside a class without labeling them public, private, or protected

a. they are assumed to be private.

3. Which of the following is/are True?

a. 	 The definition, and not only the declaration, of an inline function
needs to be available in each source code file that uses that function.

b. 	 Only a member function or a friend function can access

a private member of the class.

d. Pointers of different types may not be assigned to one another without a cast
operation.

4. Which of the following is/are True?

e. None of the above

5. Which of the following is/are True?

e. None of the above

6. Which of the following give(s) the element A[3][4] of an array A of size 10x10?

a. *(&A[0][0]+3*4)
b. *(A[3]+4)
c. (*(A+3))[4]
d. *((*(A+3))+4)
e. All of the above.

7. 8,9,10. Indicate which of the following statements are True and which are False:

7. It is not allowable to define a constructor to have void return type since it returns
nothing: T

8. It is allowable to specify a destructor to have void as parameters, since it does not take
any arguments: F

9. It is not possible to initialize a constant member data in the body of a constructor of the
class: T

10. The definition double *a[100] causes C++ to allocate storage for 100 doubles: F

 Problem 2:[30%]

sol2_2.h

// Problem Set#2 - Problem#2 [ps2_2.h]

#ifndef PS_2_2_H

#define PS_2_2_H

#define MAX_PERSONS 4
#define MAX_WEIGHT 900

int main (void) ;

struct Guard
 {

 char *name;

 double weight;

 };

class ElevatorStack

{

private:

 Guard guards[MAX_PERSONS];

 int position;

 double totalWeight;

public:
 ElevatorStack(); // Constructor
 ~ElevatorStack(); // Destructor
 void push(char *name, double weight);
 void pop(void);
};

#endif

sol2_2.C

 // Problem Set#2 - Problem#2 solution [sol2_2.C]

#include "sol2_2.h"

int main (void)
{

 ElevatorStack elevatorStack;

 char name[20];

 double weight;

 cin.clear();

 while(1)

 {

 cout << "\n\n Guard's name : " ;

 cin >> name ;

 if(cin.eof()) break;

 if(strcmp(name,"POP"))
 {

 cout << "\n Weight : " ;

 cin >> weight ;

 elevatorStack.push(name,weight);

 }
 else

 elevatorStack.pop();
 }

 cout << "\n\n Exiting the program normally" << endl << endl;
 return EXIT_SUCCESS ;
}

ElevatorStack:: ElevatorStack()
{
 cout << "\n Using the default constructor \n";

 position = 0 ;

 totalWeight = 0.0;

}

ElevatorStack::~ElevatorStack() // Destructor
{
 cout << "\nReleasing the memory for the array of structures \n";
 for(int i=0 ; i<position;i++)
 delete [] guards[i].name;

}

void ElevatorStack::push(char *name, double weight)
{

 if(position >= MAX_PERSONS && (totalWeight+weight)>MAX_WEIGHT)
 cout << "\n Guard " << name << " cannot enter the elevator \n"

 << "to avoid exceeding of both allowable weight and "

 << "number of persons";

 else if(position >= MAX_PERSONS)

 cout << "\n Guard " << name << " cannot enter the elevator \n"

 << "to avoid exceeding the allowable number of persons";

 else if((totalWeight+weight)>MAX_WEIGHT)
 cout << "\n Guard " << name << " cannot enter the elevator"

 << "to avoid exceeding the maximum weight";

 else

 {

 cout << "\n - Pushing a guard into the elevator " << endl;

 guards[position].name = new char[strlen(name)+1] ;

 strcpy(guards[position].name,name) ;

 guards[position].weight = weight ;

 position++ ;

 totalWeight += weight;

 cout << " There are " << position

 << " guard in the elevator " ;
 cout << setiosflags(ios::fixed) << setprecision(1)

 << " with total weight of " << totalWeight

 << " pounds"<< endl ;

 }

}

void ElevatorStack::pop(void)
{
 if(position==0)
 cout << "\n Stack is empty \n";

 else
 {
 cout << "\n - Poping a guard from the elevator" << endl ;

 position--;

 totalWeight -= guards[position].weight ;

 delete [] guards[position].name;

 cout << " There are " << position << " guards in the elevator" ;

 cout << setiosflags(ios::fixed) << setprecision(1)
 << " with total weight of " << totalWeight
 << " pounds"<< endl ;
 }

}

/********************** Solution output *************************
 sol2_2 < dat2_2

Using the default constructor

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 1 guard in the elevator with total weight of 180.5 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 2 guard in the elevator with total weight of 346.1 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 3 guard in the elevator with total weight of 553.1 pounds

 Guard's name :
 - Poping a guard from the elevator
 There are 2 guards in the elevator with total weight of 346.1 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 3 guard in the elevator with total weight of 524.1 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 4 guard in the elevator with total weight of 719.6 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 5 guard in the elevator with total weight of 904.6 pounds

 Guard's name :
 Weight :
 Guard Olivia cannot enter the elevator

to avoid exceeding the allowable number of persons

 Guard's name :
 - Poping a guard from the elevator
 There are 4 guards in the elevator with total weight of 719.6 pounds

 Guard's name :
 - Poping a guard from the elevator
 There are 3 guards in the elevator with total weight of 524.1 pounds

 Guard's name :
 - Poping a guard from the elevator
 There are 2 guards in the elevator with total weight of 346.1 pounds

 Guard's name :
 - Poping a guard from the elevator
 There are 1 guards in the elevator with total weight of 180.5 pounds

 Guard's name :
 - Poping a guard from the elevator
 There are 0 guards in the elevator with total weight of 0.0 pounds

 Guard's name :
 Stack is empty

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 1 guard in the elevator with total weight of 246.0 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 2 guard in the elevator with total weight of 481.4 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 3 guard in the elevator with total weight of 715.4 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 4 guard in the elevator with total weight of 960.4 pounds

 Guard's name :

 Weight :

 Guard Paul cannot enter the elevatorto avoid exceeding the maximum weight

 Guard's name :

 - Poping a guard from the elevator
 There are 3 guards in the elevator with total weight of 715.4 pounds

 Guard's name :
 - Poping a guard from the elevator
 There are 2 guards in the elevator with total weight of 481.4 pounds

 Guard's name :
 - Poping a guard from the elevator
 There are 1 guards in the elevator with total weight of 246.0 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 2 guard in the elevator with total weight of 413.4 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 3 guard in the elevator with total weight of 586.4 pounds

 Guard's name :
 Weight :
 - Pushing a guard into the elevator
 There are 4 guard in the elevator with total weight of 761.9 pounds

 Guard's name :

 Weight :
 - Pushing a guard into the elevator
 There are 5 guard in the elevator with total weight of 956.9 pounds

 Guard's name :
 Weight :
 Guard Bob cannot enter the elevator

to avoid exceeding of both allowable weight and number of persons

 Guard's name :
 - Poping a guard from the elevator
 There are 4 guards in the elevator with total weight of 761.9 pounds

 Guard's name :
 - Poping a guard from the elevator
 There are 3 guards in the elevator with total weight of 586.4 pounds

 Guard's name :

 Exiting the program normally

Releasing the memory for the array of structures

***/

 Problem 3:[70%]

Makefile

#!gmake
#==

Makefile for Problem Set # 2
#!gmake

To use this makefile: % gmake -f makeSol2 program_name

Fall - 2000

#

#==

V a r i a b l e D e f i n i t i o n s

MACHINE_TYPE = `/bin/athena/machtype`

CXX = g++

CXXINCLUDE = -I.

CXXFLAGS = -g -ansi -pedantic -Wall

LDLIBS = -lm

SRC = sol2_2.C sol2_3.C cable.C

PROG = sol2_2 sol2_3

OBJ = $(SRC:%.C=%.o)

E x p l i c i t R u l e s

-------------------------------­

#---­

all: ${PROG}

.PHONY: all

${PROG}: makeSol2

${OBJ}: makeSol2

#--

sol2_2: sol2_2.o

 @ echo " Linking to create $@"

 $(CXX) sol2_2.o -o sol2_2 ${LDLIBS}

sol2_2.o:sol2_2.C sol223.h

 @ echo " Compiling $< to create $@ "

 $(CXX) ${CXXFLAGS} -c sol2_2.C

#--

sol2_3: sol2_3.o cable.o

 @ echo " Linking to create $@"

 $(CXX) sol2_3.o cable.o -o sol2_3 ${LDLIBS}

sol2_3.o:sol2_3.C sol2_3.h

 @ echo " Compiling $< to create $@ "

 $(CXX) ${CXXFLAGS} -c sol2_3.C

cable.o:cable.C cable.h

 @ echo " Compiling $< to create $@ "

 $(CXX) ${CXXFLAGS} -c cable.C

#--

.PHONY: clean clean_o clean_p

clean:

 @echo " Cleaning all ~, executable and object files"

 -rm -f $(PROG) *.o a.out *.*~ *~

clean_o:

 @echo " Cleaning all object files"

 -rm -f *.o

clean_p:

 @echo " Cleaning all executables"

 -rm -f $(PROG)

#--­

I m p l i c i t R u l e s

-------------------------------­

#---­

%: %.o

 @ echo " Linking to create $@"

 $(CXX) $< -o $@ ${LDLIBS}

%.o:%.C

 @ echo " Compiling $< to create $@ "

 $(CXX) ${CXXFLAGS} -c $< -o $@

#---

sol2_3.h

// Problem Set#2 - Problem#3 [sol2_3.h]

#ifndef SOL2_3_H

#define SOL2_3_H

#include "cable.h"

int main();

int readCableData(Cable **c);

void printCableData(Cable *cableAssemblage, int numberCables, double weight);

double readWeight();

bool checkStrength(Cable *cableAssemblage, int numberCables, double weight);

void determineExtensions(Cable *cableAssemblage, int numberCables, double weight);

void releaseMemory(Cable *cableAssemblag);

#endif

sol2_3.C

// Problem Set#2 - Problem#3 [sol2_3.C]

#include "sol2_3.h"

#include <iostream.h>

#include <stdlib.h>

#include <iomanip.h>

int main()
{

 Cable *cableAssemblage;

 int numberCables;

 double weight;

 numberCables = readCableData(&cableAssemblage);

 weight = readWeight();

 printCableData(cableAssemblage,numberCables,weight);

 if(checkStrength(cableAssemblage,numberCables,weight))

 determineExtensions(cableAssemblage,numberCables,weight);

 releaseMemory(cableAssemblage);

 return EXIT_SUCCESS;

}

int readCableData(Cable **c)

{
 int n,i ;

 cout << "Enter the number of cables in the assemblage: ";

 cin >> n;

 *c = new Cable[n];

 for (i=0; i<n; i++)
 {

 cout<< "\nEnter the data for cable " << i+1;

 cin >> *(*c+i);

 }

 return n;
}

void printCableData(Cable *cableAssemblage, int numberCables, double weight)
{
 for (int i=0; i<numberCables; i++)
 cout << "\nCable " << i+1 << cableAssemblage[i];

}

double readWeight()
{
 double weight;

 do
 {

 cout << "\nEnter the weight of the machinery: " << endl;

 cin >> weight;

 if (weight < 0)
 cout << "Weight must be greater than zero. Try again"<< endl<<endl;

 }while (weight < 0);

 return weight;
}

bool checkStrength(Cable *cableAssemblage, int numberCables, double weight)
{
 for (int i=0; i<numberCables; i++)
 {
 if(cableAssemblage[i].fail(weight))

 {
 cout << "\n This assemblage cannot support the machinery." << endl;
 cout << "\n Cable " << i+1 << " will fail!!!" << endl;
 return false;

 }
 }

 return true;

}

void determineExtensions(Cable *cableAssemblage, int numberCables, double weight)
{
 double inversesSum=0.0, kEq, dl;

 for (int i=0; i<numberCables; i++)

 inversesSum += 1/cableAssemblage[i].kConstant();

 kEq = 1/inversesSum;

 cout << "\n Equivalent stiffness constant: Keq = " << kEq << endl;

 dl = weight / kEq;

 cout << "\n\n The assemblage will extend "

 << setprecision(3) << dl

 << " units beyond its original length.\n" << endl;

 for(int i=0; i<numberCables; i++)

 {

 cout << "Cable " << i+1 << ": stress="

 << setprecision(3)

 << cableAssemblage[i].stress(weight)

 << " Elongation=" << setprecision(3)

 << cableAssemblage[i].elongation(weight)

 << endl << endl;

 }

}

void releaseMemory(Cable *cableAssemblage)
{
 delete []cableAssemblage;
}

cable.h

// Problem Set#2 - Problem#3 [cable.h]

#include <iostream>

#ifndef CABLE_H

#define CABLE_H

// Class definition

class Cable

{

 public:

 double getLength() { return length;}

 double kConstant();

 double stress(double force);

 double elongation(double force);

 bool fail(double force);

 friend istream& operator >> (istream &i, Cable &c);
 friend ostream& operator << (ostream &o, Cable &c);

 private:

 double area, elasticModulus, length, strength;

};

#endif

cable.C

// Problem Set#2 - Problem#3 [cable.C]

/************ Externally defined member functions **************/

#include "cable.h"

// Formulas for physical quantities

double Cable :: kConstant()

{

 return area*elasticModulus/length;

}

double Cable :: stress(double force)

{

 return force/area;

}

double Cable :: elongation(double force)

{

 return force/kConstant();

}

bool Cable::fail(double force)

{

 if (stress(force) > strength)

 return true;

 return false;

}

/*************** Friend functions ************************/

istream& operator >> (istream &i, Cable &c)
{
 do
 {

 cout << "\n Area: A = " ;

 i >> c.area ;

 cout << " Modulus of elasticity: E = " ;

 i >> c.elasticModulus ;

 cout << " Length: L = " ;

 i >> c.length ;

 cout << " Strength: S = " ;
 i >> c.strength ;

 }while(c.area<=0 || c.elasticModulus<=0 || c.length<=0 || c.strength<0);

 return i;
}

ostream& operator << (ostream &o, Cable &c)
{
 cout << "\n Area: A = " ;
 o << c.area ;

 cout << "\n Modulus of elasticity: E = " ;
 o << c.elasticModulus ;

 cout << "\n Length: L = " ;
 o << c.length ;

 cout << "\n Strength: S = " ;
 o << c.strength << endl;

 return o;
}

© 1.124J Foundations of Software Engineering

	Local Disk
	Problem Set # 2 of 1.124J Foundations of Software Engineering

