
 
1.124J Foundations of Software Engineering

Problem Set 5
Due Date: Tuesday 10/24/00 

Reference Readings: From Java Tutorial  

• Getting Started: Lessons 1-3 
• Learning the Java Language: Lessons 4-7 

o 4. Object-Oriented Programming Concepts 
o 5. The Nuts and Bolts of the Java Language 
o 6. Objects and Classes in Java 
o 7. More Features of the Java Language 

 

Problem 1: [30%]

  This problem consists of 3 small parts. In the first part, you need to provide a java 
application, then in the second part you must write a java applet, and, finally, at the third 
part you need to provide, in one file, a class which can be executed both as an applet and 
as an application.  

  For all 3 parts you need to provide a class for Point objects named MyPoint. The data 
members of the class should be the following:  

• two doubles, named x and y, to store the x and y coordinates of the point. 
• one static int, named numberMyPoints to keep truck of the number of points that 

have been created 

  The class should be called MyPoint and should be provided in a file MyPoint.java. It 
should have two constructors:  

• a non-argument constructor which should install zero values to both x and y 
• a constructor which has two double as arguments by the names x and y. 

  The constructors should take care of increasing accordingly the number of MyPoint 
objects that are created using the static member data numberMyPoints.  

  The class should also provide a toString method which should return a string consisting 
of the string "(x,y) =" and the values of x and y enclosed in parentheses and separated 
with a comma e.g.:  (x,y) = (-4.6 , 9.5)  



  Finally, the class MyPoint should have a member function named move which have two 
parameters named dx and dy of type double. The function move() should add the dx and 
dy to the values of the member data x and y, respectively.  
   

Part A:

      In this part you need to provide an application, i.e. which can be executed from a 
console (e.g. an xterm), in a file named ps5_1a.java. The main function should print out 
the number of the MyPoint objects (which initially should be set to zero, since no objects 
would have been created).  

     Then, it should create (using new) an object named p1 using the non-argument 
constructor (which gives zero values). Then, the number of MyPoint objects should be 
printed again out, using the corresponding static variable. The p1 object should also be 
printed out making use of the toString() function.  

     Then,  MyPoint object, named p2, should be created and given the values -4.6 and 9.5, 
for x and the y, respectively, using the other constructor. Then, the number of MyPoint 
objects should be printed, again, out followed by the printing of the object p2 making use 
of the toString() function.  

    Finally, move the point p1 by dx=4.5 and dy=0.7, using the member function move() 
of the class MyPoint.  

The execution of the program should have an output similar to the following:  

 > java ps5_1a  
   

 Number of MyPoint objects = 0  

 Number of MyPoint objects = 1  

 p1: (x,y) = (0.0 , 0.0)  

 Number of MyPoint objects = 2  

 p2 = (x,y) = (-4.6 , 9.5)  

 p1: (x,y) = (4.5 , 0.7)  
   
  

Part B:



      In this part you need to provide an applet, i.e. which can be executed from a browser 
or using appletviewer, in a file named ps5_1b.java.  

      The applet should use the class MyPoint to define two objects, as above, p1 and p2 
with the same values as above and using the same constructors. Create a point p1 using 
the non-argument constructor and then move it as above by 4.5 and 0.7. Instead of 
printing to a console (xterm) it should paint to the browser, or to the appletviewer, the 
number of the MyPoint objects that have been created and the two objects, using the 
toString() member function.  

     The resulting image of the browser or appletviewer loading the applet ps5_1b should 
look like below:  
   
   

             Number of MyPoint objects = 2  
   

    p1: (x,y) = (4.5 , 0.7)  

    p2 = (x,y) = (-4.6 , 9.5)  
  

     To be able to load the applet you need to write an html file, named ps5_1b.html, 
which should also be submitted for grading.  
   

Part C:

      In this part you need to provide in a file named ps5_1c.java a class that can be called 
from the console (i.e. run as an application), or from a browser (i.e. run as an applet). If it 
is executed as an application should give an output similar to the one provided to part A. 
Otherwise, if it is loaded as an applet it should result to an image similar to the one given 
in part B.  

Note:  

  Overall, for all 3 parts, you need to submit the files ps5_1a.java, ps5_1b.java, and 
ps5_1c.java for parts A, B and C, respectively. You also need to submit the file 
MyPoint.java in which the class MyPoint should be defined. Finally, you need to submit 
the html files ps5_1b.html and ps5_1c.html for parts B and C.  

   Please, also, submit screendumps of the execution of each part, the output of parts A 
and C and screendump of the appletviewer (or browser) for parts B and C.  

 



Problem 2: [35%]

    For this problem you need to provide five classes, Shape, Sphere, Triangle, 
Tetrahedron, and Point, in the files Shape.java, Sphere.java, Triangle.java, 
Tetrahedron.java, and Point.java, respectively.  

    The provided classes should be able to support the provided in the file ps5_2.java 
application. This application should be able to read a number of shapes and use an array 
of references to Shape objects. The shapes can be spheres, triangles, tetrahedrons and 
their characteristics should be stored in the corresponding (Sphere, Triangle, and 
Tetrahedron, respectively) classes which are subclasses of the Shape class. You should 
not make any changes to the provided ps5_2.java file, which has the main() function and 
the other provided functions.  

    The shapes are read and then stored in an array of references to Shape objects. Then, 
all shapes are printed out using polymorphism. Finally, the references to shape objects 
are set to null and the System.runFinalization() and the System.gc() are called to force the 
finalizing of the objects and  the garbage collector to run, respectively.  

The hierarchy to be used is shown on the following figure:  



 

     You need to provide each of the above classes, namely Shape, Sphere, Triangle, and 
Tetrahedron, in the files Shape.java, Sphere.java, Triangle.java, and Tetrahedron.java, 
respectively. You also need to provide the class Point, which is used by the above classes, 
in the file Point.java. You should figure out from the file ps5_2.java what member 
functions are required in order to be able to compile and run the completed program.  

     Several constructors, static and non-static member functions, and finalizers are 
required.  All member data that are not explicitly specified, e.g. when a non-argument 
constructor is called, should be set to zero. The constructors should increase the static 
variable which counts the number of instances of that class. The finalize methods should 
decrease those numbers whenever an object is finalized.  Finally, all classes should have 
a toString() method, that can be used to print the object using the print() method of the 
System class.  

In particular you need to provide:  



1. The abstract class Shape in the file Shape.java: This class should have the following 
private members:  

• int shapeId: to store the ID of the shape 
• int numberShapes: which should be static and initialized to 0, to store the number 

of Shape objects. The constructor(s) should  increase the numberShapes 
accordingly. 

 
2. The class Sphere in the file Sphere.java: This class should have  the following private 
members:  

• double radius: to store the radius of the sphere 
• Point center: to store the center of the sphere 
• int numberSpheres, : which should be static and initialized to 0, to store the 

number of Sphere objects 

 
3. The class Triangle in the file Triangle.java: This class should have  the following 
private members:  

• Point a: to store vertex a 
• Point b: to store vertex b 
• Point c: to store vertex c 
• int numberTriangles, : which should be static and initialized to 0, to store the 

number of Triangle objects 

 
4. The class Tetrahedron in the file Tetrahedron.java: This class should have  the 
following private members:  

• Point a: to store vertex a 
• Point b: to store vertex b 
• Point c: to store vertex c 
• Point d: to store vertex d 
• int numberTetrahedrons, : which should be static and initialized to 0, to store the 

number of Tetrahedron objects 

 
  

4. The class Point in the file Point.java: This class should have  the following private 
members:  

• double x: to store the x coordinate of the point 
• double y: to store the y coordinate of the point 



 
The main() and some other functions are provided in the file ps5_2.java:  

ps5_2.java

class ps5_2  
{  
   static final int SIZE = 100;  
   static Shape shapes[];  
   

   public static void main(String args[])  
        {  
           System.out.print("\n Reading the shapes...");  
           readShapes();  

           System.out.print("\n Printing the shapes...");  
           printShapes();  

           System.out.print("\n Cleaning-up the shapes...");  
           cleanUpShapes();  
        }  
   

   static void readShapes()  
        {  
           shapes = new Shape[SIZE];  
           Point p1,p2,p3,p4,p5,p6,p7, p8;  

     p1 = new Point(4.1,5.7);  
     p2 = new Point(-3.6,-1.2);  
     p3 = new Point(2.3,-8.2);  
     p4 = new Point(-9.5,3.1);  
     p5 = new Point(-5.2,4.2);  
     p6 = new Point(-6.2,9.5);  
     p7 = new Point(-11.6,8.6);  
     p8 = new Point(-9.6, -13.6); 

 
           shapes[Shape.getNumberShapes()] = new Sphere(11);  

           ((Sphere)shapes[0]).setRadius(0.25);  
           ((Sphere)shapes[0]).setCenter(-6.8,5.3);  

           shapes[Shape.getNumberShapes()] = new Triangle(33,p1,p2,p3);  



           shapes[Shape.getNumberShapes()] = new Sphere(101);  
           shapes[Shape.getNumberShapes()] = new Triangle();  
           shapes[Shape.getNumberShapes()] = new Tetrahedron(44,p4,p5,p6,p7);  
           shapes[Shape.getNumberShapes()] = new Sphere();  
           shapes[Shape.getNumberShapes()-1].setID(147);  
           shapes[Shape.getNumberShapes()] = new Tetrahedron();  
           shapes[Shape.getNumberShapes()-1].setID(67);  
           ((Tetrahedron)shapes[Shape.getNumberShapes()-1]).setVertices(p1,p3,p8,p6);  
           shapes[Shape.getNumberShapes()] = new Sphere();  
      }  
   

   static void printShapes()  
        {  
            System.out.println("\n Number of shapes: " +  
                                          Shape.getNumberShapes());  

            System.out.print("\n   Number of Spheres: " +  
                                       Sphere.getNumberSpheres());  

            System.out.print("\n   Number of Triangles: " +  
                                      Triangle.getNumberTriangles());  
            System.out.println("\n   Number of Tetrahedrons: " +  
                           Tetrahedron.getNumberTetrahedrons());  

            for(int i=0;i<Shape.getNumberShapes();i++)  
              {  
                 System.out.print("\nShapes [ " + (i+1) + " ]: "  );  

                 if(shapes[i] instanceof Sphere)  
                      System.out.println("  Sphere " );  
                 else if(shapes[i] instanceof Triangle)  
                      System.out.println("  Triangle " );  
                 else if(shapes[i] instanceof Tetrahedron)  
                      System.out.println("  Tetrahedron " );  

                 System.out.println(shapes[i]);  
              }  
        }  

   static void cleanUpShapes()  
        {  
           System.out.println("\n\n References to shape objects are set to null");  
           int n = Shape.getNumberShapes();  



           for(int i=0;i<n;i++)  
              {  
                 System.out.print("\nSetting shape [ " + (i+1) + " ]: to null"  );  
                 shapes[i] = null;  
              }  

          System.out.println("\n\n Finalizing objects");  
          System.runFinalization();  

          System.out.println("\n Running the Garbage Collector\n");  
          System.gc();  
        }  
}  
   

The output from your program should look like the following:  

  Reading the shapes...  
 Printing the shapes...  
 Number of shapes: 8  

   Number of Spheres: 4  
   Number of Triangles: 2  
   Number of Tetrahedrons: 2  

Shapes [ 1 ]:   Sphere  
 Shape:   ID = 11  
         Radius = 0.25  
         Center: (x,y) = (-6.8 , 5.3)  

Shapes [ 2 ]:   Triangle  
 Shape:   ID = 33  
         Vertex a: (x,y) = (4.1 , 5.7)  
         Vertex b: (x,y) = (-3.6 , -1.2)  
         Vertex c: (x,y) = (2.3 , -8.2)  

Shapes [ 3 ]:   Sphere  
 Shape:   ID = 101  
         Radius = 0.0  
         Center: (x,y) = (0 , 0)  

Shapes [ 4 ]:   Triangle  
 Shape:   ID = 0  
         Vertex a: (x,y) = (0 , 0)  
         Vertex b: (x,y) = (0 , 0)  
         Vertex c: (x,y) = (0 , 0)  



Shapes [ 5 ]:   Tetrahedron  
 Shape:   ID = 44  
         Vertex a: (x,y) = (-9.5 , 3.1)  
         Vertex b: (x,y) = (-5.2 , 4.2)  
         Vertex c: (x,y) = (-6.2 , 9.5)  
         Vertex d: (x,y) = (-6.2 , 9.5)  

Shapes [ 6 ]:   Sphere  
 Shape:   ID = 147  
         Radius = 0.0  
         Center: (x,y) = (0 , 0)  

Shapes [ 7 ]:   Tetrahedron  
 Shape:   ID = 67  
         Vertex a: (x,y) = (4.1 , 5.7)  
         Vertex b: (x,y) = (2.3 , -8.2)  
         Vertex c: (x,y) = (-9.6 , -13.6)  
         Vertex d: (x,y) = (-6.2 , 9.5)  

Shapes [ 8 ]:   Sphere  
 Shape:   ID = 0  
         Radius = 0.0  
         Center: (x,y) = (0 , 0)  

 Cleaning-up the shapes...  

 References to shape objects are set to null  

Setting shape [ 1 ]: to null  
Setting shape [ 2 ]: to null  
Setting shape [ 3 ]: to null  
Setting shape [ 4 ]: to null  
Setting shape [ 5 ]: to null  
Setting shape [ 6 ]: to null  
Setting shape [ 7 ]: to null  
Setting shape [ 8 ]: to null  

 Finalizing objects  

 Running the Garbage Collector  

    In Sphere finalize  
                 In Shape finalize  

    In Triangle finalize  
                 In Shape finalize  



    In Sphere finalize  
                 In Shape finalize  

    In Triangle finalize  
                 In Shape finalize  

    In Tetrahedron finalize  
                 In Shape finalize  

    In Sphere finalize  
                 In Shape finalize  

    In Tetrahedron finalize  
                 In Shape finalize  

    In Sphere finalize  
                 In Shape finalize  
   

Note:  

You must submit, both electronically and in a hardcopy form, the files files Shape.java, 
Sphere.java, Triangle.java, Tetrahedron.java, and Point.java, in which you should 
provide the corresponding classes as explained above. You also need to submit the 
provided fileps5_2.java to facilitate the compilation and running of your program during 
grading. Please, submit a printout of the output from the completed program.  

 

Problem 3: [35%]

  In this problem you must write a Java applet that reads a number of rectangles and 
determines their total area and their centroid. The source code for the applet should be 
provided in the file ps5_3.java as a class ps5_3.  
The source code for the class Rectangle should be provided in the file Rectangle.java.  

   Class Rectangle should have 3 private members:  

• the center of the rectangle, which should be a point. You may use the same class 
that you have already developed for the class Point for the previous problems. 

• the width and the height of the rectangle, which should be doubles 

   The applet ps5_3 should have an array of Rectangles of size 10. The following 4 
rectangles should be created and referred from the array of rectangles. For simplicity 
assume that all rectangles are parallel to the x and y axes.  
   



Rectangle Xc Yc Width Height 
1 75 130 40 30 
2 100 75 30 25 
3 165 155 45 45 
4 195 85 30 50 

   Then, the applet should draw each rectangle. The total area of rectangles and their 
centroid should be computed and printed out using  two decimal points only. You also 
need to write the number of the rectangle, R1 for rectangle, R2 for rectangle 2, and so on. 
Also a circle of diameter 4 should be drawn at the centroid. The following figure shows 
how your applet should appear:  

 

 
 
 
 
 

   The centroid of a set of shapes is computed as the sum of the products of the area of 
each shape times its centroid coordinate (Xci and Yci) divided by the total area of the 
cross-section. For example, the centroid (Xc,Yc) of the following section is defined by the 
following formulas:  



 

 

    You need to submit all files necessary to compile and run your applet, i.e. ps5_3.java, 
Rectangle.java, and ps5_3.html. You also need to submit a screendump of  your  applet.  

 

 
Note:  

Please submit both printouts of the source code you have written (preferably using % 
enscript -2Gr -Pprinter filename)  and (or screen dumps of) the execution output (using 
%xdpr -Pprinter), with your name and username clearly written on the first page of the 
stapled submitted problem set. The submitted code must be identical to that 
electronically turned in (as described above).  

 
 
© 1.124J Foundations of Software Engineering  


	1.124J Foundations of Software Engineering
	Problem Set 5
	Problem 1: [30%]
	Part A:
	Part B:
	Part C:

	Problem 2: [35%]
	Problem 3: [35%]



