
1.124J Foundations of Software Engineering

Problem Set 4

Due Date: Tuesday 10/17/00

Reference Readings:
From C++ Primer
(in addition to the reference reading from PS1, PS2 & PS3):

● Chapter 11: I/O
● Chapter 12: Templates
● chapter 14: File processing

From algorithms in C++

● Chapter 9: Quicksort
● Chapter 14: Binary search

Problem 1:[40%]

 In this problem you need to develop a program that can handle user-provided data. You need to write
the main() function and two template functions. The program should be able to read using the one
template function monthly data for a number of years. It should be used twice, once to read the number
of visitors, let's say to a tourist resort, and the other the income in millions of dollars.

The input data are provided in the following files, in tabular form with each row representing the year
and for each row having 12 columns, one for each months

● visitorsNumber.data: contains the number of tourist visitors
● touristIncome.data: contains the revenue in millions of dollars

e.g. the touristIncome.data file looks as follows:

474.33 129.72 232.33 239.43 234.56 244.60 286.72 362.46 283.43 245.26 253.40 98.07

240.34 268.36 245.36 165.36 234.45 242.43 344.25 320.20 447.93 375.26 201.30 94.34

The first element represents the tourist income for the first month of the corresponding year, which in
this case assume that it is 1997. The second row has the 12 values for the income for the 1 months of
year 1998, and so on.

You are asked to implement the two template functions in the file ps4_1.h, and the main() function in
the file ps4_1.C.

main(): The main() function should:

●	 Create an array of ints, of a 50 rows by 12 columns size, to hold the provided data. This array
should be named visitors.

●	 Invoke the template function readData to read in the data. The readData function should read
until the end of the provided file. Each row has 12 values, which correspond to the values of each
month of a given year. The function readData should get from the user the initial year. It should
also count the number of years for which data are provided in the input file.

●	 Invoke the function writeInvertedData to save in a file, whose name is given by the user, the
numbers for visitors, in inverted format. The data should be saved in tabular form with each
column representing a year and each row a month. A certain formatting should be used as shown
in a sample execution of the program.

●	 Then, create an array of double, of size 50 rows by 12 columns, to hold the provided data.
Name the array income.

●	 Invoke the template function readData to read in the data. The readData function should read
all rows until the end of the provided file. Each row has 12 values, one for each month of the
corresponding year. The function readData should get from the user the initial year. It should
count the number of years for which data are provided in the input file while reading the data.

●	 Invoke the function writeInvertedData to save in a file the income values in tabular form. The
name of the file should be given by the user, and the data should be saved in an "inverted
format", with each column representing a year and each row a month. In contrast, the data are
read in with each row corresponding to a year and each column to a month. The exact reverse of
this should be used in this function, i.e. each row should correspond to a month and each column
to the year. This formatting is illustrated below in a sample execution of an implemented
program.

readData() template function: This template function should:

●	 prompt the user to give the first year of statistical data, e.g. 1997
● prompt the user to give the name of the input data, e.g. touristIncome.data

● open, then, the file with that name

●	 read until the end of file in the values into a 2-dimensional array that is passed by reference from

main() to hold the corresponding data. It should also count the number of years for which data are
provided while reading in the data

●	 print out the number of years for which data are provided

writeInvertedData() template function: This template function should:

●	 prompt the user to give the name of the file where the data should be stored
●	 then, save in that file the data, which are provided by the array that is passed as argument to the

function, e.g. visitors or income. The data should be printed in an inverted way. A sample
execution of the program, below, demonstrates the expected format that should be used while
saving the data in a file. Each row should correspond to a month and each column to a year. A
specified number of decimals (i.e. precision) should be used to print out the data. Values of
double (such as those of the income array) should be printed with 3 decimal points, while int
values (such as those of the visitors array) should be printed without any decimal point. Any int
value should be printed as an integer and not in a scientific way, e.g. you should print 3453000
and not as 3.453+06.

●	 print out the number of years for which data has been saved

Sample execution of the program:

The execution of your program should have an output similar to the following.
The bolded and italic identify whatever is entered by the user of your program.

Visitors Statistics

First year: 1997

 File with data: visitorsNumber.data

 Data for 3 years have been read

File to store data: visitors.out

 Data for 3 years have been stored to file: visitors.out

Income Statistics

First year: 1997

 File with data: touristIncome.data

 Data for 2 years have been read

File to store data: touristIncome.out

 Data for 2 years have been stored to file: touristIncome.out

The contents of the input and output files, after the above execution, are presented below:

Input files:

visitorsNumber.data:
475544 1985572 2076432 2165239 2283546 2344460 2635040 2958672 3047626 2843543 2734526 2523400 2412307 878734

2343240 2546836 2436456 1943656 2453425 2754240 3256404 3454645 3698200 4138479 3743756 3398320 983474 923498

2845672 3456566 2341653 2734562 2534400 2346307 943734 2234544 2398636 2345346 1546256 2453435 2345240 3456504

touristIncome.data
474.33 129.72 232.33 239.43 234.56 244.60 286.72 362.46 283.43 245.26 253.40 98.07
240.34 268.36 245.36 165.36 234.45 242.43 344.25 320.20 447.93 375.26 201.30 94.34

Output files:

visitors.out:
Month 1997 1998 1999
1 475544 2412307 3743756
2 1985572 878734 3398320
3 2076432 2343240 983474
4 2165239 2546836 923498
5 2283546 2436456 2845672
6 2344460 1943656 3456566
7 2635040 2453425 2341653
8 2958672 2754240 2734562
9 3047626 3256404 2534400
10 2843543 3454645 2346307
11 2734526 3698200 943734
12 2523400 4138479 2234544

touristIncome.out:
Month 1997 1998
1 474.330 240.340
2 129.720 268.360
3 232.330 245.360

 4 239.430 165.360
5 234.560 234.450
6 244.600 242.430
7 286.720 344.250
8 362.460 320.200
9 283.430 447.930
10 245.260 375.260
11 253.400 201.300
12 98.070 94.340

Problem 2:[60%]

 In this problem you need to write a program that will read a number of points store them using an
array of pointers to objects of the class Point, and print the points out, as they are. It should then call a
function to sort them using the X-coordinate and print them out sorted. Then, it should invoke the same
function to sort them using the Y-coordinate and print them out sorted.

Two files, in which the class Point is defined, are provided for you. The one is a header file named
point.h, and the other is named point.C. These files are presented below. You should NOT make any
changes to these files. However, when submitting electronically your code you need to submit these files
as well, as that will be helpful during grading in order to compile and run your code.

// Problem Set#4: [point.h]

#ifndef POINT_4_H

#define POINT_4_H

class Point

{

private:

 double x,y;

public:

 Point(double x, double y);

 double getX(void);

 double getY(void);

 friend ostream& operator << (ostream &i, Point &p);

};

#endif

// Problem Set#4: [point.C]

#include <iostream.h>

#include "point.h"

Point::Point(double x, double y)
 {
 this -> x = x ;
 this -> y = y ;

 }

double Point::getX(void)

{

 return x;

}

double Point::getY(void)

{

 return y;

}

ostream& operator << (ostream &o, Point &p)
{
 o << " (x,y) = (" << p.x << " , " << p.y << ")" ;
 return o;

}

 The code that you are asked to provide should be written in two files, the ps4_2.h and the ps4_2.C.
In the former you need to provide only the declarations and in the latter the actual definitions of your
code.

main()

 The main() function, which should be provided in the file ps4_2.C, should do the following with this

certain order:

●	 Define an array of pointers to Point objects with the name points should be defined, as well as
any other variables that you may need to use.

●	 In order to be able to use the sorting method to sort in both X and Y direction you can use a
pointer to a member function of the class Point. Then you will be able to send as an argument the
pointer to the member function to the sorting method and use it to once point to the function getX
() and sort in the X-direction, and then point to the function getX() and sort in the Y-direction.
Therefore, you may need to define a pointer to a member function of the class Point.

●	 All the function readPoints(), which you also need to provide in this file to read all the points.
The user should be prompt how many points are to be given, then the required memory for as
many points should be dynamically allocated, and the points should be provided by the user and
created dynamically with their address stored in the array of pointers.

●	 Then, the function printPoint() should be invoked to print out the points.
●	 After assigning the pointer to the function to the getX member function, in order to be able to

access the X coordinate, the quickSortPoints() should be invoked to sort the array of pointers to
Point objects using the X-coordinates.

●	 The function printPoint() should, then, be invoked again to print out the sorted points.
●	 After assigning the pointer to the function to the getY member function, in order to be able to

access the Y coordinate, the quickSortPoints() should be invoked to sort the array of pointers to
Point objects using the Y-coordinates.

●	 The function printPoint() should be invoked again to print out the sorted points
●	 Finally, the program should release the dynamically allocated memory calling the function

releaseMemory() and exit.

readPoints()

 This function should read in the data. You can use the provided file dat4_2 and redirection to save
some time while debugging your program. You need to read in the number of points and dynamically
allocate the pointers to Point, and then use one by one the x and y values and dynamically allocate
memory for a Point object and assign accordingly its address to the corresponding element of the array
of pointers.

File dat4_2 has the following structure:

5
 65.34 618.34
-365.1 	 54.92

 324.2 54.07

 72.5 527.34

-193.2 9.37

printPoints()

 This function should print out the points in a format similarly as to the following:

Points

 Point 1: (x,y) = (65.34 , 618.34)

 Point 2: (x,y) = (-365.1 , 54.92)

 Point 3: (x,y) = (324.2 , 54.07)

 Point 4: (x,y) = (72.5 , 527.34)

 Point 5: (x,y) = (-193.2 , 9.37)

quickSortPoints()

 This function should sort the points, either in X or Y direction. The latter can be specified using a
pointer to a Point class member function to point to the getX and getY functions, respectively. You will
need to call a partition function, which you also need to provide. Please, name that function
partitionPoints().

partitionPoints()

 This function should perform the partition that is necessary for quicksort.

releaseMemory()

 Finally, this function should release any dynamically allocated memory.

Sample execution:

The output of your program for the following input data set should look as follows:

Number of Points: 5

x = 65.34
y = 618.34

x = -365.1
y = 54.92

 x = 324.2
y = 54.07

x = 72.5
y = 527.34

x = -193.2
y = 9.37

Points
Point 1: (x,y) = (65.34 , 618.34)
Point 2: (x,y) = (-365.1 , 54.92)
Point 3: (x,y) = (324.2 , 54.07)
Point 4: (x,y) = (72.5 , 527.34)
Point 5: (x,y) = (-193.2 , 9.37)

Points sorted in X-direction
Point 1: (x,y) = (-365.1 , 54.92)
Point 2: (x,y) = (-193.2 , 9.37)
Point 3: (x,y) = (65.34 , 618.34)
Point 4: (x,y) = (72.5 , 527.34)
Point 5: (x,y) = (324.2 , 54.07)

Points sorted in Y-direction
Point 1: (x,y) = (-193.2 , 9.37)
Point 2: (x,y) = (324.2 , 54.07)
Point 3: (x,y) = (-365.1 , 54.92)
Point 4: (x,y) = (72.5 , 527.34)
Point 5: (x,y) = (65.34 , 618.34)

Releasing all the dynamically allocated memory and exiting....

Note:

Please submit both printouts of the source code you have written (preferably using % enscript -2Gr -
Pprinter filename) and (or screen dumps of) the execution output (using %xdpr -Pprinter), with your

name and username clearly written on the first page of the stapled submitted problem set. The submitted
code must be identical to that electronically turned in (as described above).

© 1.124J Foundations of Software Engineering

	Local Disk
	Problem Set # 4 of 1.124J Foundations of Software Engineering

