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Answer 9.1 
For a continuously operating smokestack and steady climatic conditions, we can assume a steady 
concentration field, i.e. ∂C/∂t = 0. The wind is given as u = 5 m/s, implying v = w = 0.  We are 
told to assume a uniform wind, i.e. no shear, so we neglect shear-dispersion.  For the length-scale 
of interest, LX = 10,000m, the Peclet number is (5m/s)(10,000m)/(1m2/s) = 50,000 >>> 1. With 
this high value of Pe, the longitudinal diffusion term is negligible relative to longitudinal 
advection, and we drop it. With the above assumptions, the transport equation 

∂C ∂C ∂C ∂C ∂ ∂C ∂ ∂C ∂ ∂C
(a) + u + v + w  = D + Dy + D ± S,x z∂t ∂x ∂y ∂z ∂x ∂x ∂y ∂y ∂z ∂z 

becomes 

∂C ∂2C ∂2C
(b) u = Dy 2 + Dz 2 − S,

∂x ∂y ∂z

with S = 0 for Freon and S = kTCEC for the TCE. 

& = 5 kg/min = 83 gs-1 at (x,y,z) = (0, 0, H), the solution to (b) is For a continuous release m
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where k = 0 for Freon and k = kTCE for the TCE. To account for the no-flux boundary we add a 
positive image source at (x,y,z) = (0, 0, -H). 
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In any transverse dimension for which the plume is unbounded (here the y-direction), the 
maximum concentration is at the centerline of the plume (here y = 0).  The vertical coordinate, 
however, is bounded by a no-flux boundary at the ground, z = 0.  Once the plume reaches the 
ground, concentration will build up at the no-flux boundary.  Because the upper edge of the 
plume is not bounded, the vertical concentration field will eventually become asymmetric with 
the maximum concentration at the ground.  We estimate the distance at which this will occur 
using the time-scale for the edge of the plume (the 2σ contour) to reach the ground,  

(e) T2σ = H2/(8DZ) = (20m)2 / (8 x 0.1 m2s-1) = 500 s. 



Thus, for x >> u T2σ = 2500 m, which includes the point of interest, we expect the maximum 
concentration to be at the ground.  Therefore, the maximum concentration at x = 10,000 m will 
be Cmax = C (x =10000 m , y =0, z = 0). Evaluating (d) for Freon and TCE we find, 

FREON: 
2  

Cmax 
83gs-1  5ms−1(20m)   = 2.5 mg m-3= 

−1 −1
2π (1m2s−1)(0.1m2s )  10,000m 

exp
 
 - 4( 0.1m2s )10, 000m  

TCE: 

83gs-1  5ms−1(20m)2   10000m  
=  exp − 

5ms−1 (0.1d−1)(d / 86400s)Cmax −1
2π (1m2s−1)(0.1m2s−1)  10,000m 

exp
 
 - 4(0.1m2s )10, 000m  

= 2.5 mgm-3 x 0.998 ≈ 2.5 mgm-3, 

Very little degradation of TCE occurs over the 10,000m distance. 



Answer 9.2 
A perfectly absorbing boundary can be treated like a dissolving boundary with Ceq = 0. 
The boundary is a sink rather than a source, otherwise the process of exchange between 
the bed and the water column is the same.   Here, dye is injected as a continuous point 
source and the evolving plume experiences a sink at the absorbing boundary.  If the 
system has fast mixing, then we can assume that ∂C/∂z = ∂C/∂y = 0 and use the fast-
mixing model for bed-exchange.  Then the effects of the boundary sink are modeled as a 
distributed sink S. For steady-state conditions and Pe >> 1, the transport equation  

∂C ∂C ∂C ∂C ∂ ∂C ∂ ∂C ∂ ∂C 
+ u + v + w  = + Dy + Dz ± S,

∂t ∂x ∂y ∂z ∂x
Kx ∂x ∂y ∂y ∂z ∂z 

will reduce to, 

∂C
(1) u = -S .

∂x 

However, if the dye mixes slowly over the cross-section, we cannot assume ∂C/∂z = 
∂C/∂y = 0 in the channel. Under these conditions we would use the solution for a 3-D, 
steady, continuous release (equation 8, chapter 6), with positive image sources to account 
for the no-flux side-boundaries, and a negative image source to account for the perfectly 
absorbing bed. 

Before proceeding with (1), we must check all the assumptions.  First, we will determine 
if the flow is turbulent, and if it is we will estimate turbulent diffusivities.  The hydraulic 
radius is (5cm x 10cm)/ (10cm + (2 x 5 cm)) = 2.5 cm.  The Reynolds number based on 
hydraulic radius is, ReH = (10cms-1x2.5cm)/(0.01 cm2s-1) = 2500, which indicates the 
flow is likely to be turbulent.  Next to each boundary there is a laminar sub-layer with 
thickness, δs = 5 v/u*. The friction velocity is estimated as u* ≈ 0.1U = 1 cms-1. This 
gives δs = 0.05 cm. 

Now, we estimate the coefficients of turbulent diffusion using the empirical relations for 
a straight channel given in Table 1 of Chapter 7. 

-1Dt,x = 0.45 u*h = 2.3 cm2s

-1Dt,y = 0.15 u*h = 0.75 cm2s

-1Dt,z = 0.067 u* h = 0.34 cm2s



Confirm Fast-Mixing Bed Exchange Model 
To determine if the system will follow a fast-mixing or slow-mixing model of bed-
exchange, we compare the time scale required for the channel to mix vertically with the 
time scale for diffusive flux to cross the laminar sub-layer.   

−1)δs
2 / D  (0.05cm)2(0.34cm 2sTδs = = 2 −1)TL h2 / Dt (5cm)2(10−5cm s

=3.4 

To be very confident that the fast-mixing model is appropriate, we require that Tδs is an 
order of magnitude greater than TL. Here the time scales only differ by a factor of three. 
However, the system is closer to the fast-mixing model then the slow-mixing model, so 
we proceed with that assumption.  

Confirm well-mixed conditions (∂C/∂y = ∂C/∂z = 0) for plume evolution. 
To use (1) to describe plume evolution, we must confirm that the plume rapidly mixes 
over the channel cross-section.  We need to find the distance from the source at which the 
plume is uniform in y and z.  These distances are, 

Xmix,y  = b2 u / (4 Dt,y) = (10cm x 10cm x 10 cm2s-1) / (4 x 0.75 cm2s-1) = 333 cm 

Xmix,z  = h2 u / (4 Dt,z) = (5cm x 5cm x 10 cm2s-1) / (4 x 0.34 cm2s-1) = 183 cm. 

This indicates that for distances greater than 333 cm from the source, the plume will be 
uniform in y and z.  We are interested in the position x = 2000 cm, so we can model the 
concentration as if it originated from a one-dimensional source at x = 0.  That is, we can 
assume ∂C/∂y = ∂C/∂z = 0. 

Confirm assumption of Pe >>1 
If Pe = ULx/Kx >> 1, we can neglect longitudinal dispersion relative to longitudinal 
advection. The relevant length-scale is the distance at which we want to predict the 

-1concentration, L = 2000 cm.  The longitudinal dispersion is KX = 5.9u*h = 30 cm2s . 
Then, Pe = (10 cms-1 x 2000 cm)/(30 cm2s-1) = 666>> 1. So, this assumption is 
confirmed.  

We have confirmed the assumptions that led to (1).  Now, we can replace the sink term, 
S, in (1) with the form given in equation (16) in Chapter 9. That is, 

(2) S = -


D mA 

 
(C − Ceq)= -k  C  − Ceq).(

Vδs 

2With V/A = h, we estimate the bed-exchange rate constant k=10-5 cm s-1 /(5cm x 0.05cm)
-1= 4 x 10-5 s . In this system Ceq = 0, such that (1) becomes  

∂C
(3) u = -kC 

∂x 



As shown in Chapter (6), leading to and including equation 13, the initial concentration at 
the source will be C(x = 0 ) = ubh m& . With this initial condition, the solution to (3) is. 

&m kx (4) 	 = C(x) 
ubh 

exp
−  
 u  

Note, a generic form of equation (4) was also given for a 1-D, steady, continuous release 
with first-order reaction in equation (11) of chapter 9. 

Using (4) we find the concentration at x = 2000 cm to be, 

  
C(x = 2000 cm) = 

1gs-1 
 s-1)(2000cm)  = 0.00198gcm3 

(10cms-1 )(10cm)(5cm)
exp

 
−

(4x10-5

 10cms-1  

In fact, the boundary sink does not make a significant contribution between x = 0 and 
2000 cm, as the initial concentration is 0.002 gcm-3. Barely 1 percent of the dye has been 
lost to the bed. 



1 

Answer 9.3 
We are interested in the vertical diffusion of PCE from its source at z = 0 upward into the 
aquifer. The groundwater is given to be stagnant, so that u = v = w = 0.  In addition, all 
groundwater is laminar, so we will use the laminar (slow mixing) model of dissolution.  That is, 
the boundary source is modeled by a fixed concentration boundary condition.  We assume that 
the DNAPL pool is large in lateral extent and uniform in concentration, so that the lateral 
gradients of PCE are negligible (∂C/∂x = ∂C/∂y = 0). No additional sources or sinks are named, 
so that S = 0. The system cannot be in steady state, because there is a source at the lower 
boundary and no sink, so that ∂M/∂t > 0 within the aquifer. Directly at the boundary, z = 0, the 
concentration is assumed to be at the solubility concentration, Co = 150 mgl-1 = 150 ppm. We 
assume that the total PCE in the DNAPL pool is sufficiently large that CO remains constants, 
even as PCE dissolves out of the pool. With these assumptions we may write the transport 
equation and boundary conditions, 

∂C ∂2C
= D  

∂z2 ,
∂t 

C = 0, for all z, at t < 0 
   C  =  Co = 150 ppm at z = 0 for t ≥ 0. 

The PCE concentration profile evolves according to, 

 z  
C(z, t) = Co erfc  .

 2 Dt   

The maximum concentration in the aquifer will be at the source (z = 0) and the minimum 
concentration at z = 2m, until a uniform concentration is reached throughout the aquifer.  Thus, 
to find C > 5 ppb throughout the aquifer, we need only find when C(z=2 m) = 5 ppb. From the 
above equation, we need to find when 

 z  0.005
erfc  = =  0.000033 .

 2 Dt   150 

Interpolating from the table at the end of chapter 9,  

erfc(2.94) ≈ 0.000033 

2m 

2 -9 m2s−1( ) t 
= 2.94

 4.4 x10

    t = 2.6 x 107 s = 304 days 



Answer 9.4 
Since Propane and TCE are both water-side controlled [H >> 0.01], from Chapter 9 we 
expect the rate constants describing their exchange with the atmosphere to have the 
following ratios: 

Thin-Film Model, Water-Side Control 

K TCE = 
DwTCE 

K Propane DwPropane 

Surface Renewal Model, Water-Side Control 

K TCE = 
D wTCE .

K Propane DwPropane 

The channel Reynolds number based on hydraulic radius is ReRH=13,000, indicating that 
the flow is turbulent. As described in the text, empirical evidence suggests that the 
surface renewal model is more appropriate for turbulent flows.  Using this model, KTCE = 

-11.1 x 10-4 s . 

Given that the atmospheric concentration of TCE is negligible, the flux of TCE to the 
atmosphere can be represented by the first-order sink, S = -KTCEC, in the mass balance 
equation for the stream.  As a first guess, we assume that this is the only source/sink of 
TCE along the stream.  Assume that the cross-section has uniform concentration, i.e. with 
rapid mixing, ∂C/∂y = ∂C/∂z = 0. Assume the system is at steady-state (∂C/∂t = 0). Then, 
the mass balance equation is u∂C/∂x = -KTCEC. With an upstream boundary condition, C 
= Co = 10 ppb at x = 0, the concentration downstream of the source will be  

C(x) = Co exp (-KTCEx/u). 

Evaluating this at x = 2000m, 

C(x = 2km) = 10ppb exp(-(1.1 x 10-4 s-1)(2000m)/(0.1ms-1)) = 1.1 ppb. 

The estimated concentration is much less than the measured concentration at this position 
(C = 5 ppb). This suggests that there is another source of TCE between x = 0 and 2 km. 



Answer 9.5 
Toluene [HT = 0.28 >> 0.01] is waterside controlled 
Lindane [HL = 2.2 x 10-5 << 0.01] is airside controlled 
Napthalene [HN = 0.04 ≈ 0.01] is controlled by both air and water side conditions. 

(a) Sketch the profile of C (z) for each chemical 

b) Write an equation for the mass flux at the air-water interface for each chemical. 
c) For each chemical determine the time at which only 5% of the original mass remains. 

TOLUENE LINDANE NAPTHALENE 
Ðm = Dw A Cw 
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d) For which chemicals is the assumption of a uniform concentration within the bulk fluid appropriate? 
The mixing time is, TD = h2/(4Dt) = (1m)2/(4x0.001 m2s-1) = 250 s. For every chemical TD << T5%, 
so the assumption of well-mixed conditions in the lake are appropriate for each chemical. 



Answer 9.6 

Chemical 1 is a conservative tracer that does not react or degrade. 
The peak of the non-adsorbing, non-degrading chemical will arrive soonest and with the 
highest concentration. This corresponds to the red curve.  From the peak arrival time we 
can estimate the velocity, u = 8m/4day = 2 md-1. 

Chemical 2 does not adsorb, but is degraded by microbes living in the aquifer.  
This chemical does not adsorb, and so has no retardation.  Its peak will arrive with that of 
chemical 1, but with a diminished concentration.  This corresponds to the green curve. 
Specifically, C2(t) = C1(t) exp(-kt).  Using the peak values at T1,2 = 4 days, C2peak /C1peak 
= (10.5/15.8) = exp(-kt), from which 

k2 = -ln(C2/C1)/t = -ln(10.5/15.8) / (4 days) = 0.1 d-1. 

Both Chemical 3 and 4 adsorb to the soil matrix, and so experience some retardation, as 
seen in the orange and blue curves. However, Chemical 4 has a slow adsorption process, 
and so will not be in equilibrium.  Slow sorption leads to additional dispersion.  This is 
consistent with the orange curve.  Chemical 3 therefor corresponds to the blue curve. 

Chemical 3 adsorbs rapidly and the partitioning is always at equilibrium.   
Blue Curve. The transport of this plume is slowed because at any time only the fraction f 
of the mass is in the dissolved phase and subject to fluid transport.  Specifically, the 
plume advects at the speed fu rather than u.  We can estimate f by comparing the peak 
arrival time with that of the non-adsorbing chemical.  Specifically, T1,2 = L/u and T3 = 
L/(fu), so that f = T1,2 / T3 = 4 d / 8 d = 0.5. 

Chemical 4 adsorbs so that the partitioning is not at equilibrium.  
From the discussion above, this corresponds to the orange curve.  The rate of 
sorption/desorption must be slow compared to the transport time scales.  Using the 
observed transport scale, k4-1 >> 5 d, or k4 << 0.2 d-1. 
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Answer 9.7 

a) Write an appropriate transport equation  
If Toluene is always and everywhere in equilibrium with the solid phase, its transport is 
described by, 

∂C ∂C ∂C ∂C ∂ ∂C ∂ ∂C ∂ ∂C
+ fu  + fv  + fw  = fKx(1) 

∂t ∂x ∂y ∂z ∂x ∂x
+ 

∂y
fKy ∂y

+ 
∂z 

fKz ∂z
, 

where C is the total concentration and f is the mobile fraction.   It is given that v = w = 0, and 
implied that ∂C/∂z = 0. If we also assume that K and f are homogeneous, then (1) becomes 

∂C ∂C ∂2C ∂2C
(2) + fu  = fK  2 + fK  

∂y2∂t ∂x ∂x

To determine f we need the bulk density, which is 

ρB = ρS(1 − n) = 2.6 x(1- 0.3) =  1.82 g/mL .  Then 

n 0.3
f = = = 0.25 

n +  ρBKd 0.3 + (1.82g/mL)(0.5 mL/g) 

Note, Pe = fU L / K = (0.25)(1md-1)(1000m)/(0.1 m2d-1) = 2500 >> 1, which implies that 
longitudinal dispersion is small compared to advection.  However, it appears likely (to be 
confirmed below) that the release behaves as an instantaneous release.  If so, we need the 
longitudinal dispersion term to establish the longitudinal shape of the cloud. 

b) Estimate the total concentration, C(t), at the drinking well. 
To determine if the release behaves as an instantaneous point source, we estimate the transport 
time-scale, TU = L/fU = (1000m)/(0.25 x 1 md-1) = 4000 d. Since TU is much longer than the 
duration of the release (2 hrs), we confirm that the release behaves as an instantaneous source.  
In addition, since TU >> 24 hrs (time to distribute Toluene vertically), we confirm that the 
concentration can be assumed uniform in z.  For an instantaneous source of mass, M, released at 
(x,y) = (0,0), the solution to (2) is, 

2 M  (x - fut)2 + y (c) C(x, y, t) =
Lz 4π t f K 

exp
 
 - 4 f K t  , 

where LZ = 5m is the vertical depth of the aquifer. 

c) Estimate the peak concentration in the porewater at the well and the duration of exposure. 



The peak in total concentration at the well (x = L) occurs at t = TU = L/fu and y = 0. 

2000g
=Cpeak (5m) 4π (4000 d) (0.25) (0.1m2d−1) 

= 0.32gm−3. 

The pore water concentration, Cw = (f/n) C. So the peak porewater concentration is, 

Cw,peak = (f/n) Cpeak = (0.25 x 0.32 gm-3)/(0.3) = 0.26 gm-3
. 

To estimate the duration of exposure we will define the length of the Toluene cloud by 4σ, 
evaluated at the peak arrival time, TU. 

2fKTU 44σ 4  2KL/u 4 2(0.1m2d-1)(1000m) /(1md−1) 
= 226 d = = = =Texp osure fu fu fu (0.25)(1md−1) 




