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Solution 1 

A convenient control volume can be drawn around the interior volume of the tank, and extending 
∂C 

into pipes 1 and 2 to positions of uniform concentration, i.e. = 0 along pipe. 
∂n 

Now evaluate Eq.4 for this control volume. 

(A) � � � 
∂ ∂C 
∂t C∀ 

Cd∀ = − 
CS 

CV� · �ndA + 
CS 

Dn 
∂n 

dA ± S 

∂
Because we assume steady state, = 0, the first term is zero. No source or sink is mentioned, 

∂t � 
∴ set S = 0. We evaluate the two surface integrals, CS , at the three indicated areas of flux. 

∂C 
Note that we placed the surface 1, 2, 3 far enough into the pipes that = 0 at each surface. 

∂n � ∂C 
∴ there is no diffusive flux, CS Dn dA = 0. 

∂n 

(B) Evaluating CS CV� �ndA at each flux area, · 

0 = +u1A1C1 + u2A2C2 − u3A3C3. 

From conservation of fluid mass (continuity), we also have u1A1 + u2A2 = u3A3 for incom­
pressible flow. 

(C) Using this to replace u3A3 in (B) and solving for C3, 

u1A1C1 + u2A2C2
C3 = 

(u1A1 + u2A2) 

or, 

(20 cm/s)(10 cm2)(9 mg/l) + (10 cm/s)(10 cm2)(0 mg/l)
C3 = 

(20 cm/s)(10 cm2) + (10 cm/s)(10 cm2) 
20 

C3 = 
30 

∗ 9 mg/l = 6 mg/l 
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Solution 2 

Apply the integral form of mass conservation to the control volume indicated by dashes. 

∂ � � � ∂C 
∂t C∀ Cd∀ = − CS CV� · �ndA + CS Dn 

∂n 
dA +S 

(A) ∅, b/c we assume evaluate at surface ∅, b/c we place given 

steady state	 sections 1,2 surfaces 1 & 2 

where ∂C = 0 ∂n 

(B) 
0 = u1C1A1 − u2C2A2 + S 

Note: From continuity, u2 = u1, because A2 = A1 

(C) 
S S 5 g/s 

C2 = 
u2A2 

= 
u1A1 

= 
(10 cm/s)(10 cm2) 

= 50 mg/cm3 

Solution 3 

Choose a control volume (dash) far enough away from juncture such that ∂T = 0 at each flux surface. ∂n 

(A)	 � � � 
∂	 ∂C 
∂t CV 

Cd∀ = − 
CS 

CV� · �ndA + 
CS 

Dn 
∂n 

dA ± S 

The concentration of heat energy is, 
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For simplicity, assume ρ, cp =� f(T ). If we assume steady state, then the first term in (A) 
is zero. Because we position surfaces 1, 2, 3 where ∂T = 0, the diffusive flux term is zero. ∂n 

Because the pipes are insulated, S = 0. So, finally (A) becomes, 

(B) 
0 = ρcpT1u1A1 + ρcpT2u2A2 − ρcpT3u3A3 

Dropping ρcp, and solving for T3, 

(C) 
u1A1T1 + u2A2T2

T3 = 
u3A3 

Note from statement u1A1 = u2A2. And from fluid mass conservation (u1A1 + u2A2) = u3A3. 

(D) 
u1A1(T1 + T2) 1 

T3 = = (T1 + T2)2u1A1 2


∴ T3 = 15 deg C [288K]


Solution 4 

Control Volume Approach: 

Select a short length of river, ΔX, and evaluate the control volume (integral) form of the 

conservation equation. For conservation of heat energy, replace C = ρcpT in Eq.4. 

(A)

∂ ∂C 
∂t CV 

ρcpTd∀ = − 
CS 

ρcpT V� · �ndA + 
CS 

Dn 
∂n 

dA + HsΔxb 

As the problem statement does not indicate any unsteadiness, we assume steady flow, i.e. 
∂ = 0. ∂t 

(B) Evaluating the flux terms in (A), 

∂T
 ∂T

0 = −ρcpUbh (T2 − T1) + ρcp + H3ΔxbDbh
 −


∂X
 ∂X
2 1 
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Using a Taylor expansion, assuming T is continuous in X, 

∂T 
T2 = T1 + ΔX 

∂X

∂T

∂X


∂T

+ 

∂ ∂T 
ΔX 

∂X ∂X 
=


∂X
2 1 

Plug these expansions in (B), and divide out the common terms, Δxb.


(C)

∂T ∂2T

0 = ρcph + D−U 
∂X ∂X2 + Hs 

∂T 
From which, one could solve for . 

∂X 

It is useful to consider the relative importance of the advective and diffusive fluxes. Here, 
∂T ∂2T

specifically the relative magnitudes of U and D . The scale of each term can be 
∂X ∂X2 

estimated from this system. Consider the control volume length, Δx, as an appropriate length-
scale, then 

∂T ΔT 
U 

∂X 
∼ U 

ΔX 
∂2T ΔT 

D 
∂X2 ∼ D 

ΔX2 

Where ΔT is the temperature change across ΔX. The relative magnitude of these terms is 
then, 

advective flux U ΔT UΔX 
= ΔX = 

diffusive flux D 
Δ
Δ
X
T 
2 X


This dimensionless parameter is called the peclet number. It is discussed in detail in Chapter 5.


UΔX
If >> 1, then advective fluxes dominate diffusive fluxes,


D ∂2T ∂T

and we can drop the term D << U . 

∂X2 ∂X 

UΔX
If << 1, diffusive fluxes 

∂2T 
D
 are much larger than


2∂X� 
∂T ∂T 

advective fluxes U , and we can drop U . 
∂X ∂X 

Since ΔX is not specifically defined, we ask, e.g., for what length-scale will advection dominate 

transport? 

D


UΔX D 0.1 m2s−1 

>> 1 iff ΔX >> = = 0.1 m 
D U 1 m2s−1 
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∴ over any length-scale, ΔX >> 0.1 m, we may neglect the impact of diffusion in (A) for this 
∂T 

system. The problem asks for a description of along a river channel. In such a system, 
∂X 

the length scales of interest are much larger than 10 cm, and are more like 100 m to km’s. 
Therefore, for this system, we can safely drop the diffusive transport term. Then, (C) reduces 
to, 

(D) 

0 = −ρcphU 
∂T 
∂X 

+ Hs 

from which, 

(E) 
∂T 

= 
Hs = 

Js−1m−2 

= 
K 

∂X ρcphU (kgm−3)(Jkg−1K−1)(m)(ms−1) m 

Using the stated parameters, 

(F) 
∂T 800 Wm−2 

∂X 
= 

(1000 kg/m3)(4200 J/kgK)(1 m)(1 m/s) 
= 2 × 10−4K/m = 0.2 C/km 

Differential Approach: 

The conservation of mass equation can be applied to the transport of heat energy by noting 

the concentration of heat energy, C[J/m3] = ρcpT . Then, the differential form of the 

conservation equation is, for incompressible flow, 

(G) 
∂ ∂ ∂ ∂

(ρcpT ) + U (ρcpT ) + V (ρcpT ) + W (ρcpT )
∂t ∂x ∂y ∂z 

∂ ∂ ∂ ∂ ∂ ∂ 
= 

∂x 
Dx 

∂x 
(ρcpT ) + 

∂y 
Dy 

∂y 
(ρcpT ) + 

∂z 
Dz 

∂z 
(ρcpT ) ± S 

-

-

-

-

If we neglect ρ = f(T ), then ρ �= f(x, y, z, t). 

The problem statement gives us V = W = 0, and isotropic, homogeneous D = Dx = 

Dy = Dz �= f(x, y, z). 

If we assume the system is uniform (well-mixed) in y and z, then T �= f(y, z). 

The source term is given as a surface flux, Hs = [Js−1m−2]. Since the equation deals 
in volume concentration, we must divide by depth to put the source term in consistent 
units. 
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J/m2 energy per surface area 
Hs = = 

s s 
Hs = 

J/m3 

= 
energy per volume 

h s s 

Applying the above points, (G) reduces to 

(H)	 � � 
∂T ∂T ∂2T Hs

ρcp + u = D + 
∂t ∂X ∂X2 h 

For typical length scales of interest along a river channel, ΔX ∼ 100m to km’s, it is easy to 
∂2T ∂T 

show that the diffusion term, D , is small compared to U , the advection term. Thus 
∂X2 ∂X 

∂2T ∂T 
we will drop D << U . 

∂X2 ∂X 

See scaling arguments given above. 

Finally, note that the bracketed term in (H) is the total derivative. 

(I)	 � �

DT ∂T ∂T Hs 

◦C

= + U = = 

Dt ∂t ∂X ρcph T 

This equation may be read in the Lagrangian context as, following a particular fluid particle, 
we would observed its temperature to increase at the rate ρc

H
p

s 
h 

◦ 
C/s. 

∂T 
If the flow/thermal conditions are steady, = 0, then (I) also provides a simple description 

∂t 
of spatial gradient. 

(J)	 � � 
∂T Hs 

◦C 
= = 

∂X Uρcph L 
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Solution 5


Define the epilimnion as the control volume of interest. The conservation of mass for this system, 
assuming steady state, is 

(A) 
∂C 

0 = (QC)IN − (QC)OUT − DZ A − S 
∂Z 

given CIN = 0. Assume epilimnion is well-mixed. ∴ COUT = CEP I = C(z = −4 m). Discretize 

concentration gradient across thermocline, 

∂C

∂Z
 z=−4 

≈

[C(z = −4) − C(z = −5)]


[−4 −−5]


Then solve (A) for S, 

(B) 

S = −QCEP I − DZ A
CEP I −

1 m
CHY PO 

� �
 0.4 − 4 mg/l

1 m


1 m
3/s 2 × 10−6 m 2 s−1 106 m 2(0.4 mg/l) −
= −


m3 mg 1000 l
= 6.8 = 6.8 g/s 

s l m3 

Solution 6 
∂C 

From Fick’s Law, qz = −DA . 
∂Z 

∂C 
(1) At z = 0 and z = H, < 0, ∴ qz > 0, which indicates fluxes is upward at both boundaries. 

∂Z 

∂C 
(2) At steady state, = 0. From 1-D conservation equation, 

∂t 

∂C ∂2C 
= Dz

∂t ∂Z2 
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∴ at steady state, 
∂2C 
∂Z2 = 0. ∴ 

∂C 
∂Z 

= constant. ∴ linear profile indicates this system is at 
steady state. 

∂C 
(1) < 0 at z = 0. ∴ qz > 0, positive, upward. No flux at z = H. 

∂Z 

(2) System is not at steady state. 

∂ ∂C ∂C 
= 0, ∴ from conservation EQ, = 0 

∂Z ∂Z 
�

∂Z 
�

Progression of evolving profiles shown. Note, because chemical is not volatile, surface (z = H) 
∂C 

is a no flux boundary. ∴ = 0 so that qz(z = H) = 0! 
∂Z
 z=H 
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Solution 7 

(a) The general equation (14b) is 
∂C ∂C ∂C ∂C ∂2C ∂2C ∂2C 
∂t 

+ u 
∂x 

+ v 
∂y 

+ w 
∂z 

= D[ 
∂x2 + 

∂y2 + 
∂z2 ] ±S 

(1) (2) (3) (4) (5) (6) (7) (8) 

We can eliminate several terms in this equation: 
(1) because we are looking at steady-state conditions,

(2), (3), (5) and (6) due to the negligible horizontal gradients of DO concentration and


(4) due to the insignificant vertical flows.


Thus, the equation reduces to � � 
∂2C

0 = D 
∂z2 − S 

noting that phytoplankton are a sink of dissolved oxygen. For first-order removal, S = kC, so 

our governing equation is: � � 
∂2C 

D − kC = 0 
∂z2 

(b) The general solution to this governing equation is: � � � � � � 
k k 

C(z) = Aexp z 
D 

+ Bexp −z
D 

where A and B are constants. We use our boundary conditions to determine A and B. 

- C| = 8 ⇒ A + B = 8 �z=0 

∂C ��- No flux at z = −10 m ⇒ 
∂z � = 0. 

z=−10 

Therefore, � � � � � � � � 
k k k k 

A exp (−10 m) − B exp −(−10 m) = 0 
D D D D � � � � � � 

k k ⇒ Aexp (−10 m) 
D 

= Bexp (10 m) 
D

. 

Using our values for k and D, 

k 
=

0.05 day−1 

=
5.787 × 10−7 s−1 

= 0.240/m
D 0.1 cm2s−1 10−5 m2s−1 

Therefore, from our second boundary condition, 

Aexp (−2.4) = Bexp(2.4) ⇒ 0.091A = 11.0B ⇒ A = 121.5B 
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Solving the boundary condition equations simultaneously gives A = 7.935, B = 0.065. 

Therefore, 

C(z) = 7.935exp(0.240z) + 0.065exp(−0.240z) [for z in meters] 

(c) As we have only a DO sink in the water column, the lowest concentration of DO will be found 

at the point furthest from the surface, which is maintained at a constant concentration. Thus, 
we expect the DO concentration to be lowest at z = -10 m. This is confirmed by looking at 
the plot of the vertical profile of DO in the water column (note that we have satisfied both 

boundary conditions). 

(d) As we can see from the above plot, Cmin = 1.4 mg/L. However, if k = 0.1 day−1, repetition 

of the above calculation yields a minimum concentration of approximately 0.5 mg/L, meaning 

the the health of Lake Monger is under threat. 
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