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Solution 1

A convenient control volume can be drawn around the interior volume of the tank, and extending

. . i . .. oC .
into pipes 1 and 2 to positions of uniform concentration, i.e. — = 0 along pipe.

on

DASHED LINE DEFINES
CoNTROL NOLUME

Now evaluate Eq.4 for this control volume.

(4) 0 oC
— | Cdv=-| OV -i#dA+ | D,—dA+S
ot Jov cs cs  oOn

0
Because we assume steady state, i 0, the first term is zero. No source or sink is mentioned,

coset S = 0. We evaluate the two surface integrals, fCS, at the three indicated areas of flux.

oC
Note that we placed the surface 1,2, 3 far enough into the pipes that — = 0 at each surface.

on
. there is no diffusive flux, [, DnZ—CdA =0.
n

(B) Evaluating [ CV -itdA at each flux area,
0=+u1A1C1 + ugAyCy — u3A3Cs.

From conservation of fluid mass (continuity), we also have uj A1 + ug Ay = ugAs for incom-

pressible flow.

(C) Using this to replace uzAs in (B) and solving for Cs,

w1 A1C1 4+ ug AsCy

C3 - (U1A1 + UQAQ)

O — (20em/s)(10 em?)(9mg/l) + (10 em/s)(10 em?)(0mg/1)
5T (20em/s)(10em?) + (10 em/s)(10 em?)

Cs O*9mg/l:6mg/l

" 30



Solution 2

Apply the integral form of mass conservation to the control volume indicated by dashes.

gtfcv Cdy =~ [og OV -iidA  + [ Dnaa:dA +S
(A) &, b/c we assume evaluate at surface &, b/c we place given
steady state sections 1,2 surfaces 1 & 2
where g—g =0

(B)
0=u1C1A1 —usCyAs + S

Note: From continuity, uo = u1, because As = Ay

C, = S S 5g/s

= = = = 50 ¥
ugAds  urAr (10em/s)(10cm?) mg/em

Solution 3

Choose a control volume (dash) far enough away from juncture such that g% = 0 at each flux surface.

9 Cdv¥=— | CV-idA+ Dna—CdAiS
ot Jov cs cs  on

The concentration of heat energy is,

Cldm ™3 = pe,T

.

fluid density specific heat temp
[kgm™3] [Tkg 'K~ K]
Cp, = 4200 .Jkg™ 1K1 for water




For simplicity, assume p,c, # f(T). If we assume steady state, then the first term in (A)
is zero. Because we position surfaces 1, 2, 3 where g% = 0, the diffusive flux term is zero.

Because the pipes are insulated, S = 0. So, finally (A) becomes,

(B)
0 = pepThurAr + pepTous As — pepT3uz Az

Dropping pcp, and solving for 73,
(©)

w1 A1Th + ug AxTh
T3 =

uzAs

Note from statement uy A; = ugAs. And from fluid mass conservation (u1 Ay + ugAs) = usAs.

™) AT +Ty) 1
_uwmAdy +42) 1
T3 o 2U1A1 - 2 (Tl + TQ)

T3 =15degC’ [288K]

Solution 4

Control Volume Approach:
Select a short length of river, AX, and evaluate the control volume (integral) form of the

conservation equation. For conservation of heat energy, replace C' = pc,T" in Eq.4.

(A)
0 S oC
= pcpT'dV = — pc, TV - idA + D, —dA + H;Axb
ot Jov cs cs  on

SHs
A / v '-’%' Q—» n
® o ®

As the problem statement does not indicate any unsteadiness, we assume steady flow, i.e.
2 =0

(B) Evaluating the flux terms in (A),

oT
0 = —pc,Ubh (Ty — T) + pc, Dbh (ax

_or
, 0X

) + H3Auxb
1

3



Using a Taylor expansion, assuming T is continuous in X,

or

To=T1 + —AX

2 1+6X
or| or| o8 [T
T2, 2 (Z ) ax
ax|, 8X1+8X<6X>

Plug these expansions in (B), and divide out the common terms, Axb.

or o*T

oT
F hich 1d solve for —.
rom which, one could solve for ==

It is useful to consider the relative importance of the advective and diffusive fluxes. Here,

o0*T
specifically the relative magnitudes of U—— and DW' The scale of each term can be
estimated from this system. Consider the control volume length, Ax, as an appropriate length-
scale, then
oT AT
Uox ~Vax
2T AT
D 0
0X? AX?2
Where AT is the temperature change across AX. The relative magnitude of these terms is
then,
advective flux Uﬁ—g; ~ UAX
diffusive flux D% X

This dimensionless parameter is called the peclet number. It is discussed in detail in Chapter 5.

AX
If v >> 1, then advective fluxes dominate diffusive fluxes,
and we can drop the term DaQ—T << Ua—T
v P oX2 X
AX 2T
If v << 1, diffusive fluxes D§X2 are much larger than
. oT oT
advective fluxes <U8X> , and we can drop U X

Since AX is not specifically defined, we ask, e.g., for what length-scale will advection dominate

transport?
UAX D 01m?s!

1iff AX — =
>> 11 >> 5= e

=01m



.. over any length-scale, AX >> 0.1 m, we may neglect the impact of diffusion in (A) for this

oT
system. The problem asks for a description of X along a river channel. In such a system,
the length scales of interest are much larger than 10 cm, and are more like 100 m to km’s.
Therefore, for this system, we can safely drop the diffusive transport term. Then, (C) reduces

to,

oT
0 = —pCphUaiX + Hs

from which,

oT H, Jsim=2 K

ox pcphU - (kgm=3)(Jkg=IK—1)(m)(ms=1) ~ m

Using the stated parameters,

or 800 Wm ™2 ,
09X (1000 kg/m3)(4200 J/kgK)(1m)(1m/s) - 07" K/m=0.2C/km

Differential Approach:
The conservation of mass equation can be applied to the transport of heat energy by noting
the concentration of heat energy, C[J/m?®] = pc,T. Then, the differential form of the

conservation equation is, for incompressible flow,

0 0 0 0
ot (pepT) + Uaix (pepT) + Vaiy (pepT) + W@ (pepT)

0 0 0 0

= %Dw% (pepT) + 8—yDy8—y (pepT) +

- If we neglect p = f(T), then p # f(x,y, z,1t).

0 0

- The problem statement gives us V = W = 0, and isotropic, homogeneous D = D, =
Dy =D # f(z,y,2).

- If we assume the system is uniform (well-mixed) in y and z, then T # f(y, 2).

- The source term is given as a surface flux, Hy, = [Js~!m™2]. Since the equation deals

in volume concentration, we must divide by depth to put the source term in consistent

units.



J/m? __energy per surface area

H; =

s S
Hy J/m3 __energy per volume
h

Hg AREA
W

S S

Applying the above points, (G) reduces to

(H)
or  oT) _ 90T  H
Pl Tx | T Tax2 T

For typical length scales of interest along a river channel, AX ~ 100m to km’s, it is easy to

2 or
show that the diffusion term, DW’ is small compared to U X the advection term. Thus
O*T or

See scaling arguments given above.

Finally, note that the bracketed term in (H) is the total derivative.

pr_or ,or _ H _|[C
Dt ot 0X  pceph | T

This equation may be read in the Lagrangian context as, following a particular fluid particle,

o
we would observed its temperature to increase at the rate [pgsh} C/s.
P

ST =T Y_‘E&’;At

/:—‘-MJ Jf
b {

“PROBE MOYING WITR Flow,

T
B = 0, then (I) also provides a simple description

0

If the flow/thermal conditions are steady,

of spatial gradient.




Solution 5

Define the epilimnion as the control volume of interest. The conservation of mass for this system,
assuming steady state, is
(A)
oC
0=(Q0)~ — (QC)our — Dz, A~ 5
given C7y = 0. Assume epilimnion is well-mixed. .. Coyr = Cgpr = C(z = —4m). Discretize

concentration gradient across thermocline,

aC _Clz=-4) - C(z = -5)]
Z|,__, [—4 — —5]

Then solve (A) for S,

(B)

Cepr—C
S = —QCyps — Dy AZEPL 1mHYPO

_ _ 0.4 —4mg/l
=—(1m? 4 )= (2 x107%m2s7 1) (10 m?) | ————
(1m?®/s) (0.4mg/l) — (2 x 10~°m*s™") (10° m?) T
m3 mg 10001
=6.8—— =6.8
s I m3 9/s
Solution 6
oC
F Fick’s L , = —DA—.
rom Fick’s Law, ¢ 57
oC S . .
(1) At z=0and z = H, 7 <0, .". gz > 0, which indicates fluxes is upward at both boundaries.

oC
(2) At steady state, — = 0. From 1-D conservation equation,

ot



0*C oC
*. at steady state, 972 = 0. .. 27 = constant. .'. linear profile indicates this system is at

steady state.

n —_
\

\
1hvﬁ()
Y z
\A
\

A
A

oC
(1) 27 <0atz=0...q, >0, positive, upward. No flux at z = H.

(2) System is not at steady state.

a(ac

) oC
27 8Z> #0,.". from conservation EQ, — # 0

0Z

Progression of evolving profiles shown. Note, because chemical is not volatile, surface (z = H)

oC
=0 so that ¢,(z = H) = 0!

is a no flux boundary. ... —
07|y

£ 20
T 7 a2 suu:;t&

B
.51 SIME
PROFILE

Co



Solution 7

(a) The general equation (14b) is
oC oC oC oC 0%C 0*C 0*C

o Tl tva, tee TPl g tog Tzl S

SO RN ) 3) (4) G)  (6) CORNN )

We can eliminate several terms in this equation:
(1) because we are looking at steady-state conditions,
(2), (3), (5) and (6) due to the negligible horizontal gradients of DO concentration and

(4) due to the insignificant vertical flows.

Thus, the equation reduces to

0%C
-0 [2C] s

noting that phytoplankton are a sink of dissolved oxygen. For first-order removal, S = kC|, so

9*C
D [82,2} —kC=0

our governing equation is:

(b) The general solution to this governing equation is:

C(z) = Aexp <z\/§> + Bexp (—z Z)

where A and B are constants. We use our boundary conditions to determine A and B.

Cl,.p=8=A+B=38

- Nofluxat 2= —-10m = a—c

0z =0

z=-—10
A\/Eexp ((—10m)\/§> - B\/Eea?p <—(—10 m)@) =0
 Aeay <<_1om>@ ~ Beay (uom)@ |

Using our values for k and D,

0.05day~ 1 5787 x 107 ¢~ 1
\/7 \/O 1em2s—1 - \/ 10-5 m2s—1 = 0.240/m

Therefore, from our second boundary condition,

Therefore,

Aexp (—2.4) = Bexp(2.4) = 0.091A = 11.0B = A= 12158



Solving the boundary condition equations simultaneously gives A = 7.935, B = 0.065.

Therefore,

C(z) = 7.935exp(0.2402) + 0.065exp(—0.240z)  [for z in meters]

(c) As we have only a DO sink in the water column, the lowest concentration of DO will be found
at the point furthest from the surface, which is maintained at a constant concentration. Thus,
we expect the DO concentration to be lowest at z = -10 m. This is confirmed by looking at

the plot of the vertical profile of DO in the water column (note that we have satisfied both

boundary conditions).

DO vs depth (k = 0.05)

0 2 4 a] 8
D T T T
-1 A * &
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o +
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-10 +
DO (mgil)

(d) As we can see from the above plot, Cyui = 1.4mg/L. However, if K = 0.1day ™!, repetition
of the above calculation yields a minimum concentration of approximately 0.5mg/L, meaning

the the health of Lake Monger is under threat.

10





