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10. Transport of particles


This chapter provides an introduction to the transport of particles that 
are either more dense (e.g. mineral sediment) or less dense (e.g. 
bubbles) than the fluid. A method of estimating the settling velocity of 
particles is explained, and then the loss of settling particles from a 
laminar flow and from a turbulent flow are contrasted. A simple scaling 
analysis tells us that if the settling velocity of the particles is much less 
than the friction velocity of the flow, then the turbulence will be 
sufficiently vigorous to keep the particles in suspension. 

Sample problems require the user to gauge the settling (or rise) velocity 
of suspended particles and determine the effect that it has on 
downstream particle concentration. 
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10. Introduction to the Transport of Particles 
Small, neutrally buoyant particles exactly follow the fluid flow, (u, v, w), such that their 
transport is described by the same equation used for dissolved chemicals. Particles 
whose density deviates from that of the fluid, either more (e.g. mineral grains) or less 
(e.g. gas bubbles), will have a vertical velocity relative to the fluid, wP, which constitutes 
an additional component of advection for the particle. The particle velocity is 
proportional to the density difference between the particle and the fluid and to the particle 
diameter, d. With z taken as the vertical coordinate, the additional velocity component 
appears in the third term of advective flux. 

∂C ∂C ∂C ∂C ∂2C ∂2C ∂2C
(1a) + u + v + (w + wP ) = DX 2 + DY 2 + DZ 2∂t ∂x ∂y ∂z ∂x ∂y ∂z 

In (1a), we have assumed that the particles have a narrow range of size and density, such 
that wP is the same for all particles in the flow. If the range of particle size and density is 
large, then multiple transport equations must be evaluated, each for a different sub-set of 
particles with comparable wp. In (1a) the concentration is given in C[kg m-3]. In some 
cases it is more convenient to consider the particle concentration as n [particles m-3]. If 
the distribution of particle diameter, d, and density, ρP, is narrow, then C = ρP(π/6)d3 n. 
Dividing through by ρP(π/6)d3, (1a) becomes, 

∂n ∂n ∂n ∂n ∂2n ∂2n ∂2n
(1b) + u + v + (w + wP ) = DX 2 + DY 2 + DZ 2 . 

∂t ∂x ∂y ∂z ∂x ∂y ∂z 

In turbulent flow, the diffusion coefficients for particles can be assumed to be the same as 
those for dissolved species. Under laminar flow conditions, particle diffusion will be a 
function of particle size, as shown below. 

Particle Velocity 
To determine the particle velocity, we apply conservation of vertical momentum to a 
particle considering the forces of weight, buoyancy and drag. For simplicity, we consider 
a solid, spherical particle of diameter, d, and density, ρP. The fluid density is ρF. In a 
coordinate system with z positive upward, we have 

Weight = -ρPg (π/6) d3 

Buoyancy = ρF g (π/6) d3 

Drag = - (1/2) ρF CD (π/4) d2 wP |wP| [sign of drag will be opposite to velocity] 

CD, the drag coefficient for a sphere, depends on the Reynolds number defined by the 
particle velocity, i.e. ReP = d wP / ν. The conservation of vertical momentum is then, 

∂w 1
(2) ρ π 6 d = ( F − g π /  )  d - ρFC π 4 d  w  P( / )  3 P ρ ρ  P ) (  6 3 ( / )  2 

P D wP∂t 2 
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Consider a particle starting from rest (wP = 0). If ρP > ρF the particle begins to accelerate 
downward (∂wP/∂t < 0). As wP increases, the drag on the particle increases, and acts in 
the opposite direction to wP. Eventually the drag grows large enough to exactly balance 
the particle weight and buoyancy, making the right-hand side of (2) zero. At this point 
the particle acceleration becomes zero and wP becomes constant. This is called the 
terminal velocity. Typically the time to reach the terminal velocity is very short 
compared to the time scale of interest, so that terminal velocity is assumed for all time. 
When terminal velocity is reached, ∂wP/∂t = 0, and (2) can be solved for wP. 

1/2
⎡4 gd (ρP − ρF )⎤

(3) wP = ⎢	 ⎥ 
⎣3 ρF CD ⎦ 

where CD = f(ReP) is described by the following empirical approximation for ReP < 104. 

(4) 	 CD = 
24 

+ 
3 

+ 0.34 for ReP < 104 

ReP ReP 

For Re < 1 (called creeping flow), an analytical solution exists for the drag, which yields: 

24
(5) CD = for Re < 1 [creeping flow]

ReP 

Using (5), we can simplify (3) 

2gd ( ρP − ρF )
(6) wP =	 for Re<1 [creeping flow] μF = ρFνF18μF 

(6) is called the Stokes velocity. Because ReP depends on wP, we do not know apriori 
whether (6) will apply. One can assume creeping flow, find wP using (6), and then 
confirm the assumption of creeping flow. If creeping flow is not confirmed, then an 
iterative solution is needed (see example 2 below) 

Example 1: Find the settling (particle) velocity for 0.01mm diameter quartz sand. 
The density of quartz is 2600 kgm-3. The density and kinematic viscosity (ν) of water are 
≈ 1000 kgm-3 and 10-6m2s-1. Assume ReP < 1, then 

wP = (9.8 ms-2) (10-5)2 (2600-1000 kgm-3)/(18 x 1000 kgm-3 x 10-6m2s-1) = 9 x 10-5ms-1. 

Check assumption of creeping flow 

ReP = wPd/ν = (9x10-5 ms-1)(10-5m)/(10-6m2s-1) = 9 x 10-4 << 1 check 
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Example 2: Find the settling (particle) velocity for 1mm diameter quartz sand. 
Assume ReP < 1, then from (6)

wP = (9.8 ms-2) (10-3)2 (2600-1000 kgm-3)/(18 x 1000 kgm-3 x 10-6m2s-1) = 9 x 10-1ms-1.


Check assumption of creeping flow 

ReP = wP d/ν = (9x10-1 ms-1)(10-3m)/(10-6m2s-1) = 900 >> 1 not creeping flow 

Use estimated ReP = 900 to estimate CD From (4) CD (ReP = 900) = 0.47 
Then from (4) wP = 0.2 ms-1 

New ReP =(0.001m)(0.2ms-1)/10-6m2s-1 =200 
Guess of ReP = 900 does not match resulting ReP = 200. Use new ReP to repeat process. 

Guess ReP = 200; then CD = 0.67; and wP=0.17 ms-1; yielding ReP = 170. 

Guess of ReP = 200 does not match resulting ReP = 170. Repeat once more. 

Guess ReP = 170; then CD = 0.71; and wP = 0.17 ms-1; yielding ReP = 170 

When the resulting ReP matches the guessed ReP within 10%, you can stop. 

Effects of Particle Shape 
Most quartz grains (common beach sand) are roughly spherical and solid, such that (6) 
and (3) work well. Bubbles also fit the assumptions of (6) and (3) very well. However, 
many mineral grains and clays have flat or flake-like structure, i.e. not spherical. These 
particles do not fall straight down, but tend to waft is a zig-zag pattern, like a leaf falling. 
So (3) and (6) may only be taken as ball-park values, with the deviation in velocity 
between flake and spherical morphology increasing as ReP increases. Finally, many 
particles are not solid, but are aggregates (flocs) of smaller particles, which can be quite 
porous. When flocs are very porous, their effective density is reduced to a value closer to 
the water, and wP is decreased. 

Particle Diffusion 
If the fluid flow is laminar, the diffusion of particles, like the diffusion of dissolved 
molecules, depends on the Brownian motion of the fluid molecules. The particle 
diffusion coefficient, DP, is described by the 

kT
Stokes-Einstein Equation: DP = , (7)

6  rπμ 

where r is the particle radius, T [oK] is the absolute temperature, and k is the Boltzmann 
constant, k = 1.381 x 10-23 J/oK. This equation is based on a random walk model, in 
which each step executed by a suspended particle is caused by the impact of a fluid 
molecule. The impact transfers kinetic energy from the fluid molecule to the particle, 
such that immediately following the impact the particle has kinetic energy, 
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(1 2 m u) 2 = (1 2) k T, (8) 
o 

where uo is the initial velocity of the particle after the collision and m is the particle mass. 
The subsequent motion of the particle is described by the momentum equation, 

d (mu) = -
1 
ρ C r2u2 . (9)F Dπ 

dt 2

Assuming that ReP <1, CD = 24/ReP and (9) becomes 

du 
m = −6πμru (10)

dt 

From which the particle motion can be represented as 

u(t) = u exp( t/ ) (11)− τ ,o 

where τ = m/(6πμr) is a time-scale describing the duration of motion before the particle 
returns to rest relative to the mean flow. Using this time scale and the initial velocity, uo, 
the distance traveled after one collision is 

mkT 
l = u τ = . (12)o πμ6 r  

A suspended particle experiences a continuous sequence of collisions, and after each 
collision it takes time τ to move a distance l along the line of impact. The net result is a 
random walk with step size Δx = l  and step time Δt = τ that results in a Fickian 
Diffusion. The coefficient of diffusion, as defined in Chapter 1, is 

Δx2 l2 kT
DP = = = . 

Δt τ 6 rπμ  

Instantaneous Point Source of Particles 
In previous chapters we derived solutions for the concentration field created by point 
sources. With the above considerations, these solutions can be used to describe particle 
concentration as well. As an example we consider a cloud of N particles released from a 
height, z = h, and x = y = 0 into a domain unbounded in x and y. The cloud is advected 
by a mean velocity, u, and diffused by an isotropic turbulent diffusivity, D. We will 
assume that any particle that touches the ground (z = 0) settles out and cannot be 
resuspended, so the ground is a perfect absorber. The center of mass for the cloud will be 
at (x = ut, y = 0, z = h-wPt), and for the negative image at (x = ut, y = 0, z = -h+wPt). The 
particle concentration, n [particles m-3], is 

http://web.mit.edu/afs/athena/course/1/1.061/www/dream/ONE/ONETHEORY.PDF
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⎛ P ⎞N (x ut  − )2 + y2 + (z − (h − w  t  ))  2 

n =  / exp⎜− ⎟(4πDt)3 2  ⎝ 4Dt ⎠
(13) 

N (x ut  )2 + y2 + (z + (h − w t  2 

− / exp⎜
⎛
− 

− P ))  
⎟
⎞ 

(4πDt)3 2  ⎝ 4Dt ⎠

Settling - A sink for suspended particle concentration. 
As in the above example, the settling of particles onto a boundary represents a flux of 
particles out of the fluid domain (a sink). With the positive z-axis pointing upward, the 
flux at the boundary is « Pm = -w CAH, where AH is the horizontal projection of the 
boundary and C is the concentration in the fluid next to the boundary. In some systems, 
particles that have settled can be resuspended. Resuspension of particles creates a flux 
into the fluid domain (a source). The ability of a flow to resuspend particles from the bed 
depends on the shear stress exerted at the boundary and the physical characteristics of the 
particles. The relative magnitude of the settling and resuspension determines whether 
there is a net loss or gain particles from the fluid.  In this chapter we ignore resuspension 
and consider only the settling flux. 

Settling in a System with Laminar Flow or Slow Mixing 
Consider a simple rectangular system with horizontal area A and depth h and (u, v, w,) = 
(0, 0, 0). Let z be vertically upward and z = 0 at the bottom. The system has an initial 
concentration Co that is uniform throughout the fluid domain. If diffusion is slow 
compared to settling, then we can neglect diffusion (mixing), and assume that the 
concentration within the particle cloud is unchanged as settling progresses. Assuming a 
cloud of uniform particle size and density, the particles will all settle at the same velocity 
wP. The particle flux at the bed is due to vertical advection, m(z = 0) = -w C A.« ThisP o  

flux continues until the entire water depth is cleared of particles. Under these conditions 
the loss of particle mass, M, follows zeroth-order decay. 

(14) ∂M/∂t = -wPCoA = constant and not a function of mass remaining, M. 

If we define a depth-averaged concentration as C = M/hA, 

(15) ∂C/∂t = - (wP/h) Co, 

From which we get, 

(16) C(t) = Co (1 -
wP  t), for t < h/wP. 
h 

All particles are lost from the system in exactly Tsettle = h /wP. 
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Settling in a System with Turbulent Flow or Rapid Mixing 
For the same system described above now suppose that mixing is sufficiently rapid to 
maintain a uniform concentration, C, throughout the system, even as particles are lost to 
the bed through settling. The flux at the bed is now m(z = 0) = -w CA. Although« P 

diffusion (mixing) cannot be neglected in this system, we have assumed that C is 
uniform, so we may neglect the diffusion terms because ∂C/∂z = ∂C/∂y = ∂C/∂x = 0. The 
mass conservation equation for this system is, 

(17) ∂M/∂t = Ah ∂C/∂t = -wPCA, 

from which 

(18) ∂C/∂t = -(wP/h) C, 

which is a first-order decay, with a rate constant k[time-1] = wP/h. The particle 
concentration decays exponentially, with 95% of the initial mass lost in time 3h/wP. 

Choosing a settling model 
The two models described above differ in the relative importance of mixing and settling. 
We compare these two processes by comparing the time-scale for settling over the depth, 
Tsettle ~ h/wP, and the time scale for mixing over the depth, TD ~ h2/D. If TD >> Tsettle, the 
slow-mixing model will apply. If TD << Tsettle, the fast-mixing model will apply. 

Using the scale D~u*h, for turbulent channel flow, we find the ratio of time-scales, 

time - scale for settling over h h/wp wp(19) = 2 = . 
time - scale for mixing over h h / D u* 

Then, for turbulent channel flow, if wP << u*, the turbulence in the water column is strong 
enough to keep the particles mixed, the fast-mixing model applies, and the suspended 
sediment load decays exponentially. If wP >> u*, the turbulence is too weak to mix 
sediment vertically, the slow-mixing model applies, and the suspended sediment load 
decays linearly. 


