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8. Dispersion processes 


This section looks at the longitudinal spreading of clouds through 
dispersion, a process distinct from diffusion. Dispersion is the spreading 
of a cloud by any process that causes different chemical particles to 
move at different velocities. The non-uniformity of particle velocity 
allows some particles to move quickly while others are held back, and 
can be caused by boundaries (which create shear in the flow), dead 
zones and absorption reactions (for example, to a porous medium). In 
environmental systems, dispersion is generally far more important than 
diffusion in the lengthening of chemical clouds. In this chapter, it is 
shown that dispersing clouds eventually reach a Fickian limit, at which 
point they have a Gaussian concentration profile in the longitudinal 
direction. It is also shown that longitudinal dispersion is maximized 
when lateral diffusion is small. 

The example problems ask the user to make qualitative statements 
about the dispersion expected in various flows and to predict the shape 
of a dispersing cloud. 
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8. Shear Dispersion. 
The transport models and concentration field solutions developed in previous sections 
assume that currents are spatially uniform, i.e. u � f(x,y,z). However, spatial gradients of 
velocity, known as shear, must exist close to a boundary because the no-slip condition 
requires that the relative velocity of the fluid be zero at the boundary. When shear is 
present, different parts of a tracer cloud will advect at different speeds. This 'differential 
advection' stretches the tracer cloud, causing it to spread longitudinally more quickly than 
a cloud released into a uniform current (Figure 1). In addition, differential advection 
creates lateral gradients in concentration (�C/�y in Figure 1) which, when acted upon by 
lateral diffusion, accelerates the dilution of the cloud. 

Figure 1. Top-view of two channels. In the top channel the side-wall boundary condition 
allows slip, and the velocity profile is uniform across y. In the bottom channel there is a no-slip 
condition at the side-wall boundary, creating lateral shear, �u/�y. Both channels have the same 
cross-sectional mean velocity, u. Tracer is released at t = 0, x = 0. The spatial distribution of 
each cloud is shown above at time t1 and t2. Note, the center of mass for both clouds advects at 
speed u. Velocity shear in the bottom channel stretches the tracer cloud, and as a result this cloud 
spreads longitudinally more rapidly than the cloud in the uniform channel. 

The distortion observed in the bottom channel of Figure 1 can be predicted from the full 
transport equation, 

�C �C �C �C � �C � �C � �C 
+ u + v + w = Dx + D y + Dz , (1)

�t �x �y �z �x �x �y �y �z �z 

if we include the spatial variation in velocity. However, with u = f(x,y,z), it is difficult to 
find simple analytical solutions to (1). In many instances it is sufficient to integrate the 
domain over y and z, and consider only transport in the stream-wise direction. After this 
integration the combined impact of differential advection and lateral diffusion is 
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expressed as an additional process creating longitudinal spreading, which we term Shear 
Dispersion. It is also known as Taylor Dispersion, in honor of G. I. Taylor, who first 
described this process in 1953. Under limiting conditions, to be discussed shortly, Shear 
Dispersion behaves as a Fickian diffusion process. Thus, we represent its impact in the 
cross-sectionally averaged (one-dimensional) transport equation with an additional 
coefficient of dispersion, KX. Integrating (1) over y and z yields the one-dimensional 
equation, 

� C � C �2 C �2 C 
+ u  = Dx 2 + Kx 2 , (2)

�t �x �x �x 

in which brackets represent cross-sectional averages, and for simplicity we have assumed 
homogeneous diffusivity, Dx � f(x). In general Dx << Kx, such that the former may be 
neglected, leaving us with the one-dimensional advection-dispersion equation. 

. (3)
� C 

+ u  
� C �2 C

= Kx 2
�t �x �x 

Furthermore, in the limit of Fickian behavior, we describe the evolution of the cross-
sectionally averaged cloud using the same statistical description developed for diffusion 
in previous chapters. Specifically, the longitudinal length-scale for the cloud is �x, where 

�x =  2 Kxt . (4) 

From (4) we can estimate Kx in the field by observing the evolution of variance for a 
tracer cloud. Specifically, observing the variance over time, 

1 � �x
2 

Kx = . (5)
2 �t 

We can find an analytical expression for KX by explicitly carrying out the integration that 
leads to (3), utilizing scaling arguments to simplify the mathematics along the way. It is 
important to understand the steps of this derivation, to appreciate under what conditions 
the approximate equation (3) may hold. For simplicity we will consider a very wide 
channel for which the shear in the lateral, �u/�y, is so small compared to the shear in the 
vertical, �u/�z, that the lateral shear is neglected at the outset.  This allows us to assume a 
two-dimensional channel with �/�y = 0. In addition, we assume that the flow is strictly in 
the x-direction (w = v = 0), and uniform (�u/�x = 0). With these assumptions, (1) 
reduces to 

�C �C � �C � �C 
+ u  = Dx + Dz . (6)

�t �x �x �x �z �z 

Next, we decompose u and C into depth-averaged values denoted by an over-bar, e.g. 
h 

u = (1 h)�0 
udz . Deviations from the depth-average will be denoted by a prime. 
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u(z) = u + u’(z) 
(7) 

c(x,z) = c (x) + c’(x, z) 

We put the decomposed variables into (6), and note that by definition �c/�z = 0. 

c'�
(c + c'  )+(u + u' )  

�(c + c'  )
= 
�

Dx 
�(c + c'  )

+ 
�

Dz 
�( )  

. (8)
�t �x �x �x �z �z 

We take the depth-average of each term, noting that by definition c’ = 0 and u’ = 0. 

�c �c �c' � �c 
+ u + u'  = Dx (9)

�t �x �x �x �x 

Relative to our original equation, (6), we have eliminated the vertical gradient terms by 
integrating over the vertical domain. In addition, a new term has appeared, u' �c' �x , 
that represents the flux associated with the correlation between the fluctuations in 
velocity, u’, and concentration c’, relative to their depth-averaged values. With the next 
few steps we will find a solution for c', so that we might evaluate this new flux term. As 
both (8) and (9) must both hold true, we may subtract (9) from (8) to yield. 

�c' �c �c' �c' � �c' 
+ u'  + u'  - u'  = Dz (10)

�t �x �x �x �z �z 

Now we place an important condition on the magnitude of the spatial fluctuation c'. 
Specifically, we assume that c'<< c. If this is true, then the magnitude of both the third 
and fourth terms in (10) must be small compared to the second term, and we may drop 
the small terms, reducing (10) to 

�c' �c � �c' 
+  u'  = Dz

�t �x �z �z (11)
differential advection vertical diffusion 

This equation describes how vertical fluctuations in concentration, c', are created by 
differential advection and destroyed by vertical diffusion. Initially, when �c/�x is large, 
differential advection dominates, creating c' faster than vertical diffusion can erase it. 
But, eventually, �c/�x becomes small enough that the rate at which c' is created by 
differential advection is balanced by the rate at which it is destroyed by vertical diffusion. 
When these two processes are in balance, �c'/�t goes to zero and (11) becomes. 

�c � �c'
u' = Dz . (12)
�x �z �z 
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We can solve (12) with a no-flux boundary condition at the bed and water surface, i.e. 
�c'/�z = 0 at z = 0 and h. Recall that by definition, c � f(z). Then, 

�c z 1 z 
c' (z) = � � u' dzdz +  c' (z = 0). (13)

�x 0 Dz 0 

Because the diffusivity, DZ, is the sum of turbulent and molecular diffusion, it may be a 
function of vertical position, and so remains inside the integral. 

Figure 2. Consider a tracer cloud whose leading edge is uniform at time t. Differential 
advection distorts the cloud giving it a new shape by time t+dt.  The spatial deviation in velocity, 
u’, creates the concentration perturbation seen at t + dt. Specifically, from the first two terms in 
(11), c’ = -(� C/�x ) u’ dt. 

Now we return to (9) to evaluate the new term, u' �c' �x . Because we assume u � f(x), 
then u' � f(x), and we can write the new term as �u' c' �x . We evaluate the correlation 
u' c'  with (13), noting that u'  c' (z = 0) = u'  c' (z = 0) = 0 , because u' = 0 . 

1 h �c z 1 z 1 �c h z 1 z 
u' c' = � u' � � u' dzdz dz = � u' � � u' dzdz dz . (14)

h 0 �x 0 Dz 0 h �x 0 0 Dz 0 

This correlation is the advective flux associated with spatial fluctuations in the velocity 
field. This flux is proportional to the concentration gradient, and so behaves as a Fickian 
diffusion. Thus, we choose to model this flux using a transport coefficient, just as we did 
for turbulent diffusion in the previous chapter. The transport coefficient is called the 
longitudinal dispersion coefficient, KX. The negative sign indicates that the flux is 
counter-gradient. 

�c
u' c' = �Kx , (15)

�x 
where 
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 . (16)


The second expression in (16) is valid when DZ � f(z). This expression describes the 
contribution of vertical shear to longitudinal dispersion. A similar term describes the 
contribution of lateral shear. 

Now we can write the new term in (9) as, 

�c' � �2c
u' = u' c' = -Kx 2 (17)
�x �x �x 

Using (17) in (9), we arrive at the one-dimensional equation, 

2�c �c � �c � c 
+ u = Dx + Kx 2 , (18)

�t �x �x �x �x 

where DX in (18) and DZ in (16) represent the sum of molecular and turbulent diffusion, 
which for practical purposes is just turbulent diffusion. Elder evaluated (16) for a 
logarithmic profile with DZ = f(z) and found 

KX = 5.93u*h. (19) 

Note that (19) only accounts for velocity shear over depth (�u/�z) and not for lateral 
velocity shear (�u/�y). This is an acceptable approximation for wide, straight channels. 
Comparing (19) with the empirical estimate for longitudinal diffusion, DX = 0.45u*h, we 
see that KX is an order of magnitude larger. Because of this, the diffusion term is often 
neglected in (18), and we have returned to equation (3), repeated here for convenience. 

2�c �c � c 
+ u  = Kx 2 (20)

�t �x �x 

Solutions to this one-dimensional equation, with Dx replaced by Kx, have already been 
described for instantaneous and continuous point releases. These solutions can now be 
used for systems with shear-dispersion dominating longitudinal diffusion (as in 20). 
As one might expect, (16) shows that the coefficient of shear dispersion increases with 
the magnitude of the shear, expressed as the magnitude of the spatial deviations u'. The 
dependence KX ~ h is less straight-forward. However, considering that each integral is 
proportional to h, and that Dz ~ h, (16) yields KX ~ h, consistent with (19). Finally, (16) 
indicates that KX is inversely proportional to the cross-stream diffusivity, DZ (i.e. Kx is 
greatest when Dz is smallest!). To understand this somewhat unintuitive dependence, 
remember that shear dispersion arises because velocities on adjacent streamlines are 
different so particles on different streamlines advect at different speeds and thus become 
separated (dispersed) longitudinally. This is the differential advection component of 
shear dispersion. At the same time, each particle is mixed over depth (or width), 
experiencing the velocity of each streamline that is passes for some fraction of time. If 
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the cross-channel diffusion is high, the particles sample all the velocities in the profile so 
rapidly that they effectively travel at the mean channel velocity. If they all effectively 
travel at the mean velocity, they do not disperse (separate) in the longitudinal direction, 
and shear dispersion will be zero, even though shear is not zero. As the cross-stream 
diffusion is reduced, particles can accumulate more differential advection as they remain 
on individual streamlines for a longer period. 

Now it is important to recall the assumptions that allowed us to reach the 
advection-dispersion equation (20). Early on we made the assumption that c'<< C . In 
addition, for (12) to be valid, we specifically required that the rate at which c' is created 
exactly balance the rate at which c' is destroyed, so that a nearly uniform concentration 
profile exists in the cross-stream direction. Note that a nearly uniform profile would 
automatically satisfy c'<< C , such that the two assumptions are closely linked. To 
understand when these assumptions are valid, we consider the evolution of a tracer cloud 
from its initial release, as shown in Figure 3. The tracer is introduced as a line distributed 
over the full depth at time t = 0. Differential advection, u', creates perturbations in the 
concentration profile, c', at the rate �c’/�t = u’� C /� x . When the cloud is first 
introduced, the mean concentration gradients are very large, such that the creation of c' is 
very rapid and pronounced. This is reflected in the geometric distortion of the cloud 
shape (t1, Fig. 3). The concentration perturbations are dissipated by lateral diffusion, 
which acts at the rate, �c’/�t = DZ �2c’/�z2. As the cloud spreads, the longitudinal 
gradient of mean concentration, � C /� x , decreases and the rate at which concentration 
perturbations are created slows. Eventually, the rate at which the perturbations are 
created by differential advection comes into balance with the rate at which they are 
destroyed by diffusion such that (12) is valid. From tracer studies, this is observed to 
occur at time scale 

TDispersion = 0.4 LZ
2/DZ, (21) 

after the tracer is released, where Lz is the length-scale of the channel in the cross-stream 
direction (width or depth). For vertical shear, LZ = h, the water depth. After this time 
(e.g. t2 in Figure 3) the concentration is close to uniform over depth, such that c' << C . 
The process of shear-dispersion has reached its Fickian limit and the longitudinal 
distribution of the depth-averaged concentration is Gaussian. Note that this time scale is 
inversely proportional to cross-stream diffusion, DZ. And recall from (16) that KX is also 
inversely proportional to DZ. This means that the conditions (DZ) which yield the greatest 
KX will also require the longest time (longest distance from source) for shear-dispersion 
to take hold and for (20) to apply. 
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Figure 3. Evolution of tracer cloud released at t = 0 as a line distributed over depth. Initially (t1) 
differential advection dominates, visibly distorting the geometric shape of the cloud. At this time 
(t1) the longitudinal distribution of the depth-averaged concentration, C , is skewed. Eventually 
differential advection and diffusion balance and the cloud approachs uniform concentration over 
depth. After this time (t2) the longitudinal distribution of the depth-averaged concentration is 
Gaussian and the dispersion process has reached its Fickian limit. 

Other Mechanisms of Dispersion 
Dispersion is a broad term used to describe all processes, except diffusion, that disperse a 
patch of tracer and diminish concentration. Typically dispersion coefficients reflect a 
combination of advection and diffusion processes that are difficult to model separately. 
For example, the coupled effects of differential longitudinal advection and cross-channel 
diffusion create shear dispersion. In flow through porous media, the existence of 
multiple discrete flow paths also creates differential advection that leads to dispersion. 
The flow paths in a porous medium are constrained to discrete, intertwining pore 
channels, and multiple flow paths exist between any two points. The time to traverse a 
given flow path depends on the geometry of the pores. Flow through narrow pores is 
slower than flow through wider pores. Also, some flow paths are nearly linear, and thus 
short, and others are very tortuous (bending) and thus long. In addition, each pore 
channel behaves like a small tube, with higher velocity at the center of the pore than at 
the grain surface. The pore-scale shear contributes to dispersion in the same manner as 
channel-scale shear, as described above. Together, the above processes contribute to a 
longitudinal spreading of tracer particles. That is, tracer particles released together will 
take different flow paths and get separated (dispersed) both laterally and longitudinally. 
This is called mechanical dispersion. This form of dispersion can reach a Fickian limit 
after every tracer particle has sampled a sufficient number of pore channels. 
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Figure 4. Dead-zone Dispersion. The lateral diffusion of particles into a region of zero 
velocity, called a dead-zone will create longitudinal dispersion. Tracer that enters the dead-zone 
is held back relative to the tracer that does not. When the tracer is released from the dead-zone, it 
is separated in space (dispersed) from the rest of the cloud. 

Another form of dispersion arises when the flow field contains zones with zero 
velocity, called dead-zones. Tracer particles can enter these zones through turbulent or 
molecular diffusion. After some mean residence time, �, within the dead-zone, the tracer 
is again released to the advecting zone. Any tracer that enters the dead-zone will be held 
back relative to the tracer that does not, so that, when the tracer is released from the dead-
zone, it is separated (dispersed) from the rest of the cloud. For a dead-zone to contribute 
to dispersion, its residence time must be long compared to the time scale of passage of 
the original tracer cloud. Otherwise there is no delay associated with entering the dead-
zone, and thus no dispersion. Possible dead-zones include pore spaces with no outlet, a 
side-pool in a river, and a wake behind an obstruction. If the dead-zones are distributed 
through out the flow field, then dead-zone dispersion can reach a Fickian limit after a 
sufficient number of dead-zones have been sampled by the tracer cloud. This can be the 
case for dead-end pores in a porous medium and for the wakes behind individual stems 
within a wetland. If only a few dead-zones can be experienced, e.g. a small number of 
pools and riffles along a river reach, then the Fickian Limit cannot be reached. The 
trapping and delay associated with a single or small number of dead-zones (as in Figure 
4) produce non-Gaussian (non-Fickian ) dispersion, and the longitudinal distribution of 
concentration, C (x), will be skewed, with a long tail on the upstream end associated with 
the tracer temporarily trapped in the dead-zone. An example of this skewed distribution 
is shown at t1 in Figure 3, which also represents a condition for which the Fickian limit 
has not been reached by the dispersion process. 

A third process of dispersion can arise from chemical reaction with the stationary 
substrate, e.g. grain walls in porous media or channel boundaries. Consider the tracer 
depicted in Figure 5, which can adsorb to the solid boundary. When the dissolved 
chemical (white circles) is released into the channel, it begins to adsorb to the boundary 
(black circles) with reaction rate k. The chemical associated with the boundary is 
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stationary, and thus will be delayed relative to the dissolved phase, which continues to 
move downstream at speed U. Once the local dissolved concentration drops to zero, the 
adsorbed chemical is released back to the moving fluid (gray circles, t1 and t2, Figure 5), 
also at rate k. The cloud is dispersed longitudinally because some fraction of the mass is 
delayed by adsorption to the boundary. As with dead-zone dispersion, adsorption to the 
solid boundary can only result in dispersion if the time scale for the adsorption processes 
(1/k) is long compared to transport time-scale of the cloud, such that each adsorption 
event results in some delay. In Chapter 9 we will discuss the effect of adsorption under 
conditions for which the time-scale of the adsorption/desorption reaction is very short 
compared to the transport time-scales, such that the concentration in the dissolved and 
adsorbed phases always remain at equilibrium. 

Figure 5. Some fraction of the dissolved chemical (white circles) may adsorb to the solid, 
stationary boundary (black circles). The adsorbed chemical is released from the boundary (gray 
circles) after the dissolved cloud has passed. The adsorption and desorption of chemical results in 
a transport delay that lengthens (disperses) the tracer cloud. 
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