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7. Velocity profiles and turbulence


Turbulence is a ubiquitous phenomenon in environmental fluid 
mechanics that dramatically affects flow structure and mixing. Thus, it is 
very important to form both a conceptual understanding and a 
quantitative description of turbulent flows. This section looks at the 
origin and statistical description of turbulence, as well as the structure of 
a turbulent boundary layer. The notes also focus upon the 
characterization of rapid turbulent mixing in environmental systems. 
Sample problems in this chapter test the user's ability to evaluate key 
flow parameters from turbulent boundary layer profiles, as well as to 
determine the scales of turbulent diffusivity in environmental flows. 
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7. Basics of Turbulent Flow 
Whether a flow is laminar or turbulent depends of the relative importance of fluid friction 
(viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds number. 
Given the characteristic velocity scale, U, and length scale, L, for a system, the Reynolds 
number is Re = UL/ν, where ν is the kinematic viscosity of the fluid. For most surface 
water systems the characteristic length scale is the basin-scale. Because this scale is 
typically large (1 m to 100's km), most surface water systems are turbulent. In contrast, the 
characteristic length scale for groundwater systems is the pore scale, which is typically quite 
small (< 1 mm), and groundwater flow is nearly always laminar. 

The characteristic length-scale for a channel of width w and depth h is the hydraulic 
radius, Rh = wh/P, where P is the wetted perimeter. For an open channel P = (2h + w) and 
for a closed conduit P = 2(h+w). As a general rule, open channel flow is laminar if the 
Reynolds number defined by the hydraulic radius, Re = URh/ν is less than 500. As the 
Reynolds number increases above this limit burst of turbulent appear intermittently in the 
flow. As Re increases the frequency and duration of the turbulent bursts also increases 
until Re > O(1000), at which point the turbulence is fully persistent. If the conduit 
boundary is rough, the transition to fully turbulent flow can occur at lower Reynolds 
numbers. Alternatively, laminar conditions can persist to higher Reynolds numbers if the 
conduit is smooth and inlet conditions are carefully designed. 

Figure 1. Tracer transport in laminar and turbulent flow. The straight, parallel black lines 
are streamlines, which are everywhere parallel to the mean flow. In laminar flow the fluid 
particles follow the streamlines exactly, as shown by the linear dye trace in the laminar region. 
In turbulent flow eddies of many sizes are superimposed onto the mean flow. When dye 
enters the turbulent region it traces a path dictated by both the mean flow (streamlines) and 
the eddies. Larger eddies carry the dye laterally across streamlines. Smaller eddies create 
smaller scale stirring that causes the dye filament to spread (diffuse). 
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Characterizing Turbulence: 
Turbulent eddies create fluctuations in velocity. As an example, the longitudinal (u) and 
vertical (v) velocity measured at point A in figure 1 are shown below. Both velocities 
varying in time due to turbulent fluctuations. If the flow were steady and laminar then 
u u=  and v v for all time t, where the over-bar denotes a time average.= For turbulent 
flow, however, the velocity record includes both a mean and a turbulent component. We 
decompose the flow as follows. 

u (t) = u + u′ (t) 
(1)

v (t) 	 = v + v′ (t) 
mean  turbulent fluctuation 

This is commonly called a Reynolds’ decomposition. 

t [seconds] 

u [cm/s] 
v [cm/s] 

u 

v = 0 

u'(t) = u(t) - u 

Figure 2. Velocity recorded at Point A in Figure 1. 

Because the turbulent motions associated with the eddies are approximately random, we can 
characterize them using statistical concepts. In theory the velocity record is continuous and 
the mean can be evaluated through integration. However, in practice the measured velocity 
records are a series of discrete points, ui. Below an overbar is used to denote a time average 
over the time interval t to t+T, where T is much longer than any turbulence time scale, but 
much shorter than the time-scale for mean flow unsteadiness, e.g. wave or tidal fluctuation. 

t T 	 N+ 
Mean velocity:	 u = ∫ u(t) dt = 

1 ∑ui (2)
N 

t 1 
continuous record  discrete, equi-spaced pts. 

u′( ) t = u t ( ) − u : continuous record 
Turbulent Fluctuation: (3) 

u′ i = ui	 − u : discrete points 

2	 1 N 2
Turbulence Strength: urms = u (t) = u (4)′ ∑( )′iN i 1= 

continuous record discrete, equi-spaced pts 
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Turbulence Intensity: urms/ u (5) 

The subscript ‘rms’ stands for root-mean-square. You should recognize the definition of 
urms given in (4) as the standard deviation of the set of “random” velocity fluctuations, u′ i . 
Similar definitions apply to the lateral and vertical velocities, v(t) and w(t). A larger urms 
indicates a higher level turbulence. In the figure below, both records have the same mean 
velocity, but the record on the left has a higher level of turbulence. 

Mean Velocity Profiles - Turbulent Boundary Layers: 
Near a solid boundary the flow has a distinct structure, called a boundary layer. The most 
important aspect of a boundary layer is that the velocity of the fluid goes to zero at the 
boundary. This is called the "no-slip" condition, i.e. the fluid velocity matches (has no slip 
relative to) the boundary velocity. This arises because of viscosity, ν, which is a fluid's 
resistance to flowing, i.e. fluid friction. The fluid literally sticks to the boundary. The 
higher its viscosity, the more a fluid resists flowing. Honey, for example, has a higher 
viscosity than water. The kinematic viscosity of water is ν = 0.01 cm2/s. The figure below 
depicts a typical mean velocity profile, u(y), above a solid boundary.  The vertical axis (y) 
denotes the distance above the boundary. The fluid velocity at the boundary (y = 0) is zero. 
At some distance above the boundary the velocity reaches a constant value, U∞, called the 
free stream velocity. Between the bed and the free stream the velocity varies over the vertical 
coordinate. The spatial variation of velocity is called shear. The region of velocity shear 
near a boundary is called the momentum boundary layer. The height of the boundary layer, 
δ, is typically defined as the distance above the bed at which u = 0.99 U∞. 

t [seconds]

U [cm/s]

U
urms

t [seconds]

U [cm/s]

U
urms
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Shear Produces Turbulence: 
Turbulence is an instability generated by shear. The stronger the shear, the stronger the 
turbulence. This is evident in profiles of turbulence strength (urms) within a boundary layer 
(see figure below). The shear in the boundary layer decreases moving away from the bed, 
∂ ∂u y) ∂ <y 0, and as a result the turbulence intensity also decreases.  Very close to the 
bed, however, the turbulence intensity is diminished, reaching zero at the bed (y=0). This is 
because the no-slip condition applies to the turbulent velocities as well as to the mean 
velocity. Thus, in a thin region very close to the bed, no turbulence is present. This region 
is called the laminar sub-layer, δs. Note that the profiles shown below are normalized by 
the free-stream velocity, U∞. This is done to emphasize the fact that the mean and turbulent 
profiles within a boundary layer are self-similar with respect to the free stream velocity, U∞. 
This means that both profiles have the same shape regardless of the absolute magnitude of 
the external flow, U∞. Because of this self-similarity, we have the general rule of thumb that 
the turbulence level increases with the free stream velocity, urms ~ U∞, where the symbol ~ is 
read “scales on”. In addition, as the turbulence level increases, the thickness of the laminar 
sub-layer decreases. In general, δs ~ (1/U∞) 

( ∂

δs 

As a second example, consider the profiles of mean and turbulent velocity measured across 
a jet. The profiles are self-similar when normalized by the centerline velocity, UCL. The 
maximum turbulence level occurs at the positions of maximum shear. At the centerline the 
shear is zero ( ∂ ∂ = 0 ), and the turbulence strength is diminished. u y 

y 

δ 

u / U∞ 
urms / U∞ 

y 

1 0.1 
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= u y 
y=0 

∂ ∂( )τ ρ  ν  

Friction [Shear] Velocity, U*: 
Physically, we know that the turbulence level scales on the shear, urms~ ∂ u/∂y. But this 
scale relationship is not dimensionally consistent, so we introduce a velocity scale to 
represent the shear strength. This velocity scale, u*, is called the shear velocity, or the 
friction velocity, and it characterizes the shear at the boundary. The definition of u* is based 
on the bed stress, τbed, i.e. 

τbed = ρu*
2, (6) 

where τbed is defined by the stress-strain relation, 

∂u 
= . (7)τbed ρν 

∂y

y=0


Thus, u = (8)* 

The shear velocity characterizes the turbulence strength and laminar sub-layer thickness. 

urms  ~  u* (9) 

δ  = 5 ν / u* (10)s

Turbulent Velocity Profile: The Logarithmic Velocity Profile: 
The shape of the velocity profile within a turbulent boundary layer is well-established by 
theory and experiment. The profile has specific characteristics very close to the bed where 
viscosity controls the vertical transport of momentum, and different characteristics farther 
from the bed where turbulence controls the vertical transport of momentum. The region 
closest to the boundary is called the Laminar Sub-Layer, because within the region 
turbulence is suppressed by viscosity. In this region the velocity profile is defined by the 
stress-relation given in (7). We substitute the definition given in (6) into (7) and use the 
approximation ∂u/∂y ≈ u/y to solve for the velocity profile. 

Laminar Sub-Layer [y < δs = 5 ν / u*]: u(y) = u*
2 y / ν (11) 

Above the Laminar Sub-Layer (y > δs) the velocity profile is logarithmic. The profile shape 
depends both on the bed stress (through u*) as well as on the bed texture, described by the 
characteristics roughness, yO. 

Logarithmic Layer [y > δ ]: u(y) = 2.3u* log (y y ) (12)s 10 oκ 

κ = 0.4 is an empirical constant, known as von Karman’s constant. 

Nikuradse studied the influence of boundary texture on velocity profile shape. He glued 
uniform sand grains of diameter ε, to the bed of a flume and measured the velocity profile 
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over the bed at different flow speeds. He found two different behaviors defined by the 
roughness Reynolds number, εu*/ν. For conditions with εu*/ν < 5, yo = ν/9u*, i.e., the 
characteristic roughness is NOT a function of the real roughness scale. This means that the 
velocity profile shape, through yo, is not a function of the real roughness scale, or, simply, 
the logarithmic portion of the velocity profile is independent of the surface roughness under 
these conditions. To understand why, recall from (10) that the thickness of the laminar sub-
layer, δs = 5 ν / u*. So, Nikuradse’s findings simply say that when the surface texture is 
smaller than the laminar sub-layer (ε < 5 ν / u*), then the flow above the laminar sub-layer 
does not feel the surface texture. We call this regime Smooth Turbulent Flow. When the 
roughness becomes larger than the laminar sub-layer, specifically ε > (70 to 100)ν /u* = 14 
to 20 δs, then the flow above the laminar sub-layer does feel the surface texture. Under 
these conditions yo = ε /30, i.e. the characteristic roughness IS a function of the real 
roughness scale, and the logarithmic profile is altered, through yo, by the surface texture. 
We call this regime Rough Turbulent Flow. 

u* ε ν u* ε ε< 5, y = > 70 − 100,  y = 
ν o 9u* ν o 30 

Example of Fitting a Logarithmic Profile. 
An example of a mean velocity profile is graphed in two forms on the following page, using 
logarithmic and linear axes. The linear axes reveal the more familiar boundary layer profile. 
The logarithmic portion of the profile appears linear on the logarithmic axes. By fitting the 
logarithmic portion of the profile, we can estimate the characteristic roughness, yo, and the 
friction velocity, u*. The red line is the log-linear fit to the velocity profile. We ignore the 
two points closest to the bed, as these do not follow the same log-linear trend as the rest of 
the profile, and we suspect (and will later check) that they lie within the laminar sub-layer. 
From (12) the slope of the red, fitted line gives us an estimate for u*. Specifically, we select 
two points on the red line, y1 = 6 cm and y2 = 0.05 cm, with velocity u1 = 1.2 cms-1 and u2 
= 0 cms-1, respectively. Then, 

κ u2 − u1 κ . − 0 cm / s1 2  
u = = = . cm / s* 0 1  

. log10(y1) − log10(y2) 2  3  . log10( / . )2 3  6 0 05  

The characteristic roughness, yo, is the y-intercept of the red line. That is, from (12), u = 0 
when y = yo. From the graph, yo = 0.05 cm. Since yo > ν/9u* = 0.01, the flow is not 
Smooth Turbulent. From (10) the laminar sub-layer thickness is 0.5 cm, which confirms 
that the two points closest to the boundary lie inside the laminar sub-layer. Finally, if we 
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assume the flow is Fully Rough Turbulent, ε = 30 yo = 1.5 cm.  Then the roughness
Reynolds’ number is εu*/ν = 15.  Because εu*/ν < 70, we conclude that the flow is not
Rough Turbulent, but in a transition between  Smooth and Rough.
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Turbulent Transport in the Equation of Mass Conservation
The presence of turbulence creates fluctuations in concentration.  As we did with the
velocity field above (see equation 1), we decompose the concentration into a temporal mean
and turbulent fluctuations around that mean.  As above, the over-bar indicates an average
over time-scale T, which is long compared to the turbulent fluctuations.

C (t) =  C +  C′ (t) (13)

For simplicity we start with a one-dimensional version of the equation of mass conservation
(transport equation),

∂C ∂(uC) ∂ ∂C
+ = D

∂t ∂x ∂ x , (14)
x ∂x

into which we substitute the decomposition of velocity and concentration.

∂( )C +C u′ ∂( )( (u + ′ ′) C +C ) ∂ ∂( )C +C′
+ = D

∂t ∂x ∂x x (15)
∂x

Now, we time average each term.  By definition, a =′  0, and  a =  a .  Then (15) becomes,

∂C ∂( )uC + u′ ′C ∂ ∂C
+ = D

∂t ∂x ∂x x . (16)
∂x
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The term ′ ′u C represents the net mass flux due to turbulent advection.  If we could fully 
calculate the turbulence field, we could calculate the turbulent flux and solve (16). 
Unfortunately this is quite complex and computationally intensive, and for many flows quite 
prohibitive. Alternatively we can devise a model for the turbulent flux in terms of the mean 
velocity and concentration, which are easily known. Then (16) can be readily solved. A 
simple mixing-length model is proposed below. It assumes the turbulent motions can be 
characterized by the length-scale of the eddies. 

Mixing-Length Model for Turbulent Flux-
Below is a long narrow tube with linear concentration gradient ∂ C/∂x < 0. There is no 
mean current in the tube, u =0. Consider the transport achieved by a single eddy with 
length-scale lx. At the top of the eddy u′ > 0, and the eddy carries forward fluid of higher 
concentration, such that a probe positioned at the dashed line would momentarily record a 
concentration greater than the local mean when this eddy is present. That is, at the position 
of the dashed line, ′ u′ ′ ′C > 0 where > 0. Similarly, for this eddy, where u < 0 then C < 0.  

The magnitude of the concentration fluctuations will be of the scale, |C′| ~ lx ∂ C/∂x. The 
sign of the concentration fluctuation depends on both the sign of the concentration gradient 
and the sign of the velocity fluctuation. Again we consider the picture above in which ∂C/∂x 
is negative. The part of the eddy for which u′ is also negative produces a negative c'. The 
part of the eddy for which ′ ′  In a region with positiveu is positive produces a positive C .
gradient, ∂C/∂x > 0, u′ positive produces ′ u negative produces ′ ′C negative, and C positive. 

x and C < 0, and when ∂In general, when ∂C/∂ u′ have the same sign, ′ C/∂x have opposite 
sign, C′ > 0. So, the sign of C′ is -sign ( u′ ∂C/∂x). Using this definition for the sign of 
C we can now write the turbulent advection generated by an isolated velocity fluctuation ′ u .′
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u′ C′ = - ′ C/∂u lx ∂ x 

Averaging over an ensemble of random fluctuations associated with the many eddies within 
a turbulent system, we write 

′ ′~ C′ = - ′ C/∂ (17)u C  u′ u lx ∂ x. 

This relation tells us that the turbulent flux behaves as a Fickian diffusion. The flux is 
proportional to the mean concentration gradient, and is counter gradient. Following this 
analogy, we define a turbulent diffusion coefficient, or turbulent diffusivity,

 Dt,x  ~ u lx, ′ (18) 

Such that the turbulent flux can explicitly modeled as an additional diffusion term, 

u C = -D′ ′ t,x ∂ C/∂x. (19) 

Simply stated, this model shows that the turbulent flux depends on the strength of the 
turbulence ( ′u ) and the scale of the turbulence (lx).  From our previous discussion, the 
strength of turbulence is characterized by the friction velocity, i.e. ′ In fact manyu ~ u*. 
length-scales of turbulence co-exist in a turbulent flow, so to apply (18) we must select the 
length scale that is most important to the turbulent flux. In general, this will be the largest 
length-scale in the system, because (18) tells us the effective diffusivity increases with eddy 
scale. Thus, the dominant length-scale of the turbulent transport will depend on the 
geometric constraints of the domain, which dictates the largest eddy scale in the domain. 
Returning to (16) and replacing the turbulent correlation (19), we arrive at 

uC∂C
+ 

∂(  )  
= 

∂
(Dx + D t,x  ) 

∂C 
(20)

∂t ∂x ∂x ∂x 

Thus, we have shown that the effect of turbulence on the transport equation can be modeled 
simply by increasing the coefficient of diffusion by an amount dictated by the strength and 
intensity of the turbulence. In general the turbulent diffusivity, Dt,x is much greater than its 
molecular counterpart, such that the latter is simply ignored. Now, the solutions already 
devised for the transport equation can be applied in turbulent flow, but with the molecular 
diffusivity replaced by its turbulent cousin. 

Finally, through similar reasoning on can quickly show that the turbulent diffusivity in 
the vertical and lateral dimension will scale as, 

Dt,y  ~ v ly  ′
(21) 

D  ~ w lz. ′t,z

Because turbulence is often anisotropic in both length-scale (lx ≠ ly ≠ lz) and intensity ( u′ ≠ 
v′≠ ′ ≠ D ≠ D ).w , we expect that the turbulent diffusivity will also be anisotropic (Dt,x t,y t,z
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Turbulent Diffusivity in a Channel 
The turbulence in a channel may be characterized by the bed friction velocity, u*, and a 
characteristic length-scale. A reasonable and convenient choice for the length-scale is the 
flow depth, h. Then, from (18), the turbulent diffusivity in the river scale as Dt  ~ u*h. The 
scaling constant must be determined from tracer studies. Table 1 presents range of scale 
coefficients compiled from multiple tracer studies. 

Table 1. Turbulent Diffusivity in Channels 
(x,y,z)=(streamwise, lateral, vertical)


Dt, x = (0.3 − 0.45) u*  h


0.15 u*  h straight channel


Dt, y = 0.6 u*  h gentle meanders


3.4 u*  h strong meanders 

1
Dt, z = 15

 u*  h 

•• Constants are empirical, except for Dt,z which is based on theoretical models of length-scale. 

The aspect ratio of most channels is such that lx >> ly > lz, so that we expect from (18) and 
(21) that DX > DY > DZ. This is indeed the case for straight channels. However, curvature 
(or meanders) in a channel introduce secondary circulations (lateral currents) that increase 
lateral mixing. With strong meanders the effect is sufficiently strong to make Dt,y >> Dt,x. 
Typical river values are: Dt,x=10 - 8000 cm2/s, Dt,y=10 – 10000 cm2/s, Dt,z=1 – 3000 cm2/s. 

From Table 1, to estimate the diffusivity in a river we need the channel depth and 
friction velocity. It is often difficult to measure sufficiently detailed velocity profiles from 
which to estimate the friction velocity, such that a simpler method has become common. 
Consider steady flow in a wide channel of width b, depth h << b, and bed-slope, S = sin θ, 
where θ is the angle to the horizontal. The momentum balance is between the component of 
fluid weight directed along the channel and the bed stress. Consider a length of channel dx. 
Neglecting the wall-stress (reasonable for a wide channel), 

ρ g dx h b S – τbed dx b = 0. (22) 

Using the definition of friction velocity, τbed = ρ u*
2, (21) can be solved for u*. 

u* = ghS (23) 


