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6. Continuous point sources


In contrast to previous sections, this chapter describes the continuous 
release of chemicals into a fluid (e.g. smoke released from stacks, 
groundwater flux into a river, industrial waste streams etc.). A chemical 
released continuously into a moving fluid will form a plume that grows in 
the lateral dimension through diffusion and extends downstream via 
advection. This chapter describes the concentration field of the plume in 
both bounded and unbounded domains. In a bounded domain (e.g. a 
narrow, shallow channel), the steady-state solution is obtained by a 
simple mass balance; the transient period before steady-state is far 
more interesting, and the analytical expression describing the 
concentration front is derived here. The animation highlights how the 
observed concentration front varies with distance from the source. 

The sample problems test the user's ability to simplify problems based 
on the geometry of the domain, and also to obtain information on the 
diffusion coefficient based on the observed concentration front. 
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6. Continuous Release - Point Source 
A scalar released continuously into a moving fluid and from a discrete point will form a 
plume that grows in the lateral dimension through diffusion and extends downstream via 
advection. Because the concentration profile perpendicular to the flow is established by 
Fickian diffusion from the centerline, it has a Gaussian distribution. For this reason the 
plume is called a Gaussian Plume. Some common examples that approximate a Gaussian 
plume include smoke released from a stack, a waste stream released into river, and the 
contaminant plume emerging from a leaking drum buried underground. 

Figure 1. Concentration contours for a Gaussian plume originating at x=0, y=50 cm, z=0. The 
concentration profiles C(y) and C(z) are Gaussian. For example, see the profile C(x=125, y, z=0) 
shown above in black. 

A release may be considered continuous if the advection time scale is short compared to 
the duration of the release. And a release approximates a point source if the scale of the 
source is small compared to the distance from the source and the width of the plume at 
that distance. Whether a source approximates a continuous or instantaneous release, and 
whether it approximates a point or distributed source depends not only on the 
configuration of the source, but also on the spatial position of interest. Thus, the choice 
of approximations does not depend on the absolute spatial and temporal scales of the 
source, but rather on the relative scales. For example, consider a river with mean flow U. 
The concentration observed during and after a ten-minute release (Trelease) of chemical into 
this river will approach the predictions for a continuous release for downstream locations 
x < < UTrelease, but will approach an instantaneous release at x >> UTrelease. 

Steady-State, One-Dimensional Solution for a Continuous Release 
Consider a long, narrow channel of width Ly, depth Lz, unidirectional flow U, and 
isotropic diffusion, D. At mid-width and mid-depth in this channel we release a 
continuous stream of tracer at a rate, ṁ [kg s-1]. Neglecting reaction, the Conservation of 
Mass equation (transport equation) is, 

�C �C �C �C ��2C �2C �2C� 
(1) + u + v + w  = D  � + + � . 

�t �x �y �z �� �x2 �y2 �z2 ��
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Typically a river is advection dominated such that Pe >> 1 for any distance of interest 
downstream (Pe = xU/D >> 1 for any x of interest). For this condition, the longitudinal 
diffusion term will be negligible when compared to the longitudinal advection term, i.e. 
D�2C/�x2 << u�C/�x, and the former term will be dropped. We assume that the release 
has been occurring sufficiently long that the conditions in the river have reached steady-
state (�C/�t =0). Specifically, in an advected dominated system and at a distance x 
downstream of the release the steady-state will be reached at time t >> x/U. Furthermore, 
we assume that the time-scale to mix the tracer uniformly over the width and depth, Tmix, 
is sufficiently short that we may assume the tracer is instantly uniform over the cross-
section. Then �C/�y = �C/�z = 0. This is satisfied at distances x >> UTmix. With these 
additional assumptions, (1) reduces to 

�C
(2) u = 0 ,  

�x 

or simply, C � f(x) in the far field of a continuous, bounded release. To find the far-field 
concentration value we enforce mass balance within a control volume around the release. 

Figure 2. Mass Balance within a Control Volume around a Steady, Continuous Source. Top 
view of the channel with flow Qr and continuous injection of concentration Ci at rate Qi. 

In steady-state, the total mass in the control volume is not a function of time, and the sum 
of influxes and outfluxes of mass must balance, i.e., 

Qr Cr + Qi Ci = Qf Cf = (Qr +Qi) Cf 
influxes  outflux 

With Cr = 0, we find the far-field, steady concentration. 

(3) Cf = (Qi Ci) /(Qi + Qr). 

Dilution Gauging: 
The steady, far-field solution is sometimes used to estimate the volumetric flow in rivers 
with shallow complex bathymetry, for which the deployment of velocity meters is 
impractical. The tracer release is designed so that the injection flow rate, Qi, is far less 
than the stream flow, Qr, so that (Qr+Qi � Qr).  The injection concentration and injection 
rate are known, and the far-field concentration, Cf, is measured. Then from (3), 
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(4) Qr = Qi Ci / Cf. 

Recall that (4) requires the tracer to be well-mixed over the channel cross-section at the 
point that Cf is measured. The concentration of a conservative tracer (no sources or 
sinks) will cease to be a function of downstream distance once it is well-mixed over the 
cross-section. So, to establish the position at which (4) can be applied, measure the 
concentration progressively downstream until it asymptotes to a constant value. 

Steady, Continuous, Point-Source in an Unbounded Domain 
Next consider a steady, continuous, point source in an unbounded domain. Without 
boundaries a well-mixed condition can never be reached, so all dimensions must be 
retained. We assume that v = w = 0, neglect reaction; and use Pe >> 1 to neglect 
longitudinal diffusion relative to advection. For generality we allow anisotropy in 
diffusion [Dx � Dy � Dz]. The equation governing steady transport in this system is, 

�C � 2C � 2C
(5) u = Dy 2 + D z 2 . 

�x �y �z 

The above equation indicates that advection and diffusion are decoupled by coordinate. 
That is, transport in the x-direction is by advection only and transport in the y- and z-
directions is by diffusion only. To solve (5) we recast it in a frame of reference moving 
with the flow. Let � = x/u, then u�C/�x = �C/d(x/u) = �C/��, and (5) becomes 

�C �2C �2C
(6) = Dy 2 + Dz 2 . 

�� �y �z 

Equation (6) describes the evolution of tracer within a thin slab of fluid moving 
downstream at speed u. The slab has length dx. As the slab passes the injection point, it 
receives a slug of mass M = ṁ (dx/u), where dx/u represents the duration of time the slab 
is exposed to the injection. If the injection is located at x = 0, the slab receives the slug of 
mass at � = 0. Thus, the initial condition within the slab is C(� = 0) = M �(y) �(z), for an 
injection located at y = z = 0. The solution to (6) with this initial condition was given in 
Chapter 3, equation (23). Modifying that solution to the coordinates used here, 

M � y2 z2 � 
(7) C(y,z, �) =  exp�� - - 	

	 . dx 4� �  DyDz � 4Dy� 4Dz �� 

We return (7) to the stationary frame by substituting � = x/u. Additionally, M = ṁ (dx/u). 
This gives us the concentration field for a steady, unbounded, 3-D, continuous release 
(ṁ ) from point source at (x, y, z) = 0 

ṁ
 2uy uz2 

(8) C(x,y,z) =
 exp
 -
 -

4� D D 4D x 4D
x
 x
y z y z
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Downstream Evolution of Continuous Plume in a Channel 
Now we consider the downstream evolution of a continuous source (Fig. 3). The release 
is at mid-depth (z = 0), mid-width (y = 0) and x = 0. To account for the boundary 
conditions at the channel walls and the water surface we must add image sources to the 
unbounded solution given in (8). Recall from Chapter 4 that a no-flux boundary can be 
satisfied with a positive image source and a totally absorbing boundary can be satisfied 
with a negative image source. If the chemical in the plume is not volatile, the water 
surface acts as a no-flux boundary. The four no-flux boundaries are satisfied with a sum 
of positive images located at (x=0, y=nLy, z=0) and (x=0, y=0, z=nLz) with n = ±1, ±2, ±3 
upward to ± infinity. 

(9) 

)2 

z )
2u y +  nL

4D x 4D

(
 2 2uy (u z + nL

4D x 4D

ṁ


n 

uz
y
C(x,y,z) =
 +
exp
 -
 -
 exp


4� D D x
 x
 x
=ny z y z y z
but n �0 

In the second sum n = 0 is excluded as it represents the real source which is already 
accounted for in the first sum. 

Figure 3. Continuous Release at mid-width (y=0), mid-depth (z = 0) and x = 0. The points at 
which the plume becomes uniformly mixed over depth (x1) and width (x2) are indicated. 

The plume concentration will be well-mixed over depth at x > u Lz
2/4Dz, and �C/�z = 0 

beyond this distance (Figure 3). This removes the vertical diffusion term from (5). 
Following the same mathematical development following (5) for a three-dimensional 
plume, an unbounded two-dimensional plume released from (x,y)=0 has the 
concentration field. 

ṁ/u uy
2 � 
(10) C(x,y) =


L 4�Dy (x / u) z 

exp -

4D x
y
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With �C/�z = 0, the no-flux boundaries at the surface and bed are automatically satisfied. 
We only need to account for the side boundaries with image sources at (x=0, y=nLy, z=0) 
for n = ±1, ±2, upward to ± infinity. The concentration in the plume between x1 and x2, 
as shown in Figure 3, is then approximately 

(11) C(x, y) = 
ṁ/u

 Lz 4�Dy (x /  u) 
exp -

u y  +  nLy( )2 

4Dyx�

� 
��

�

� 
��n =�� 

� 

� , 

where again, n = 0 represents the real source. 

Transient, One-Dimensional Solution for Continuous, Point Source in a Channel 
Figure 3 represents the spatial evolution downstream of a continuous source after steady-
state has been reached. Now we consider the transient period between when the injection 
starts (t = 0) and the concentration field reaches a steady state (t >> x/U). Specifically, 
we allow �C/�t � 0.  For simplicity we assume a well-mixed condition over width and 
depth, such that �C/�y=�C/�z = 0, and we assume no reaction. 

�C �C �2C
(12) + u  = Dx 2�t �x �x 

We retain the longitudinal diffusion term, even though we expect Pe >>1. In Figure 4, 
below, we see that the diffusion term creates spatial detail around the front, or leading 
edge of the plume. Once the injection is initiated, each slab of fluid, of width dx, passing 
the release point receives mass M = ṁ (dx/u).  We assume that the mass instantly mixes 
within the slab, i.e. over the channel depth and width and over the length dx, such that the 
initial concentration in the slab is C(x=0) = C0 = M/(Ly Lz m /(u Ly z). Thedx) = ˙  L
boundary conditions then become, 

C(x) = 0 �x, t < 0 

(13) C0 = 
ṁ

x = 0,  t � 0 
u L L y z 

The solution to (12) with boundary conditions in (13) is 

One-Dimensional, Transient Solution to Continuous Release 

x - ut  
erfc 

4Dz x t

=


ṁ
 C0 x - ut 

(14) C(x,t)
 =
 erfc
 .


4Dx2 u L  L
 2
 t
y

The function, erfc, is called the complementary error function, and is defined in Table 1 
below. The distribution in (14) is called a Break-Through Curve, because it represents 
the temporal evolution of concentration when tracer first breaks through at a specific 
distance downstream of an injection. Figure 4 provides an example for a tracer injected 



� 

6 

at x = 0 beginning at t = 0 into a channel with current speed u. If the tracer mixes quickly 
over depth, Lz, and width, Ly, then (14) predicts the concentration measured at x = Lx. 

Figure 4. Break-Through Curve. Injection of tracer at rate ṁ is initiated at t = 0. The 
concentration observed at x = Lx, shown as a black curve, follows (14). The break-through curve 
shown in gray results if diffusion is neglected, Dx = 0. 

Table 1. The error function, erf(a), is the integral of the Gaussian distribution from zero to a. The 
complementary error function is the integral of the Gaussian distribution from a to infinity, or 
simply, erfc(a) = 1 – erf (a). In addition, erfc(-a) = 2-erfc(a). 

2 
a 

2 
� 

erf(a) = � e � r2

dr erfc(a) = 
� � e � r2

dr 
0 a 

a erf(a) erfc(a) a erf(a) erfc(a) 
0 0 1.0 1.4 0.952285 0.047715 
0.7 0.677801 0.322199 2.0 0.995322 0.004678 
1.0 0.842701 0.157299 3.0 0.999978 0.000022 
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Example: Break-Through Curves with Gaussian Plume. 
You can open the animation on the Chapter 6 homepage. The animation depicts the 
evolution of the concentration field downstream of a point source located at (x = 0, y = 
50 cm, z = 0) and initiated at t = 0 in a channel with steady flow u=1 cm/s and 
longitudinal diffusion coefficient D = 2 cm2/s. The concentration is measured at three 
points all at elevation z = 0. At each point the center of the front, defined by C = 0.5 
Cfinal, arrives at the advection time scale, x/u. The duration of the front, which is the time 
required for the concentration to rise from C=0 to Cfinal, is 4�i/u, where �i is the length-
scale of the front at t = x/u, i.e. �i = 2Dxx / u  . Use the table below to compare the 
transport time-scales with the concentration record at each Probe. 

Probe x[cm] y[cm] x/u [s] �i[cm] 4�i/u [s] 
A 100 50 100 20 80 
B 250 50 250 32 128 

C 250 0 250 32 128 


