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4. Boundary Conditions 


This section discusses the evolution of a diffusing cloud once it 
encounters a boundary. Emphasis is placed on two common types of 
boundaries, namely those that are perfectly absorbing and those 
through which there is no flux. The theory section describes how the 
use of image sources allows us to correctly model the concentration 
profile of the cloud in the presence of a boundary. The animation 
compares the effect that no-flux and perfectly absorbing boundaries 
have on a diffusing cloud, highlighting the progression to a well-mixed 
condition in the presence of parallel no-flux boundaries. 
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4. Boundary Conditions 
When a diffusing cloud encounters a boundary, its further evolution is affected by the 
condition of the boundary. The mathematical expressions of four common boundary 
conditions are described below. 

Specified Flux: In this case the flux per area, (q/A)n, across (normal to) the boundary is 
specified. The subscript 'n' indicates the direction of the outward facing normal, such that 
(q/A)n is understood as the flux leaving the fluid domain. The specified flux boundary 
condition is then written, 

(1) [CVn - Dn�C/�n]at the boundary = (q/A)n = flux leaving fluid domain at boundary 

Specified Constant Concentration: In this case the concentration at the boundary is given. 

(2) Cat the boundary = constant 

No-flux boundary: This is a special case of the specified flux condition given above, with 
(q/A)n = 0. The most general condition is, 

(3a) [CVn - Dn�C/�n]at the boundary = 0. 

Again, the subscript 'n' indicates the outward facing normal. For no flux, the advective 
and diffusive fluxes must exactly balance. If the boundary is solid, then the velocity 
normal to it is zero, and the constraint is reduced to, 

(3b) �C/�n = 0 at boundary. 

When the source is located on the boundary (3b) is somewhat misleading, because the 
symmetry of the Gaussian curve about its center allows (3b) to be satisfied even as mass 
leaves the real domain. This exception is explained below. 

Perfectly Absorbing: Any chemical molecule that touches this boundary is instantly 
absorbed, and thus removed from the fluid. The concentration in the fluid at this 
boundary must be zero. 

(4) Cat the boundary = 0 
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No-Flux Boundary Condition:

Analytical solutions that satisfy the no-flux boundary condition are found using the

principle of superposition. The method requires that the transport equation,


�C	 �C �C �C �2C � 2C �2C
(5) + u + v + w = Dx 2 + Dy 2 + Dz ± S2

�t	 �x �y �z �x �y �z 

be linear. This is generally the case, unless the specific form of the source or sink (±S) is 
non-linear. If the equation and boundary conditions are linear, then one can superpose 
(add together) any number of individual solutions to create a new solution that fits the 
desired initial or boundary condition. The method is demonstrated here for a one-
dimensional system in x, into which mass, M, is released at x = 0 and t = 0. For 
simplicity, velocity is assumed to be zero everywhere in the system. The cross-sectional 
area perpendicular to the x-direction is Ayz. A solid boundary exists at x = -L. 
Specifically, we wish to solve: 

�C	 �2C
(6a) = D  2

�t	 �x 

(6b)	 Initial Condition (t = 0): C(x) = M�(x) 
Boundary Condition: �C/�x = 0 at x = -L. 

The system's transport equation and initial condition are satisfied by the one-dimensional 
solution for an instantaneous, point release located at the real source position: 

(7)	 Creal(x, t) = 

However, this solution, shown as a solid black line in the following figure, does not 
satisfy the no-flux condition at x = -L. Specifically, �C/�x > 0 at x = -L. In addition, (7) 
allows the mass ��

�

� 
LC(x)dx to cross the boundary x = -L. This mass can be exactly 

replaced within the real domain (x > -L) by adding a new, identical source at x = -2L. 
The additional source is located at the mirror image to the original source, with the mirror 
located at the no-flux boundary x = -L. So, we call the added source an image source. 
The mass distribution for the image source, Ci(x,t), is shown as a dashed line. Its shape is 
identical to the original source, C(x,t), but its peak is shifted from x = 0 to x = -2L. The 
shift is accomplished by forcing the exponential term to be one at x = -2L, i.e. making the 
argument zero at x = -2L. 

M
(8)	 Cimage(x, t) = exp(-(x + 2L)2 4Dt)

A 4� Dtyz 

M 

Ayz 4� Dt 
exp - x 2 4Dt( ) . 
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The superposition (sum) of the original and image sources is shown within the flow 
domain (x > -L) as a thick, gray line. Note, specifically that this curve satisfies the 
condition �C/�x = 0 at x = 0, as stated in (6).  The solution is thus the sum of (7) and (8), 

(9)	 C(x, t) = Creal + Cimage =
A

M 
(exp(-x 2 4Dt) + exp (-(x + 2L)2 4Dt))

4� Dtyz 

Perfectly Absorbing Boundary Condition:

The method of superposition can also be used to satisfy a perfectly absorbing boundary

condition. Consider again the one-dimensional system described above, with the

boundary at x = - L acting as a perfect absorber. We then seek a solution to,


�C	 �2C
(10a) = D  2

�t	 �x 

(10b)	 Initial Condition (t = 0): C(x) = M�(x) 
Boundary Condition: C (x=-L, t) = 0. 

As above, the basic solution within the flow domain will be that for an instantaneous 
release of mass at a discrete point, namely (7). To satisfy the boundary condition, we 
now subtract, rather than add, the image source. 

(11)	 C(x, t) = Creal - Cimage = 
M 

(exp(-x 2 4Dt)- exp (-(x + 2L)2 4Dt)) . 
A 4� Dtyz 

By subtracting the image source (dashed line) from the real source (solid black line), the 
concentration at the boundary is fixed at zero. Note that the superposed solution (heavy 
gray line) indicates a flux into the boundary at x = -L, i.e. �C/�x > 0, which is consistent 
with an absorbing boundary. Also note that the solution (11) gives negative 
concentrations for the region x < -L, which is physically unrealistic. However, this 
region is outside the real flow domain (x > -L), so that the unrealistic values are 
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unimportant. We only require the solution within the real domain (x > -L) to be 
physically reasonable, and it is. 

Multiple Boundaries: 
If there is more than one boundary, additional image sources will be required. 
Continuing with the same one-dimensional system describe above, we now consider 
boundaries at both x = -L and x = +L. 

�C	 �2C
(12a) = D  2

�t	 �x 

(12b)	 Initial Condition (t = 0): C(x) = M�(x) 
Boundary Condition: �C/�x = 0 at x = -L and x = +L 

To satisfy a no-flux condition at x = -L, we add an image source at x = -2L, as above. To 
satisfy a no-flux condition at x = +L, we need an image source at x = +2L. These two 
image sources are depicted in figure 3. 
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Figure 3 depicts the concentration field for small time. At longer time, one anticipates 
that, for example, the image source originating at x = -2L will reach and begin to cross 
the opposite boundary at x = +L and mass will again be lost from the real domain. To 
balance the loss, an additional image is needed at x = +4L, i.e. at the image of x = -2L 
across a 'mirror' located at the boundary x = +L. Similarly, the image source at x = +2L 
requires its own image across the x = -L boundary, i.e. at x = -4L. Taking this reasoning 
further, we ultimately need an infinite number of images, just as an object between 
parallel mirrors generates an infinite number of images. The solution to (12) is then, 

M

(exp(-(x + 2nL)2 4Dt)) .
(13) C(x, t) =


A 4� Dt	 n= ��yz 

Similarly, if the boundaries at x = ±L are perfect absorbers, we must solve 

�C �2C
(14a) = D  2

�t	 �x 

(14b)	 Initial Condition (t = 0): C(x) = M�(x) 
Boundary Condition: C = 0 at x = -L and x = +L. 

Simple geometric reasoning will show that negative images are needed at x = ± 2L and 
positive images at x = ±4L, and continuing thusly in an alternating fashion. That is, 

� � (x + (4n - 2)L)2 	 � (x + 4nL)2 	 	M

(15) C(x, t) =
 �� +  exp��- exp
 -
 -
 .


A 4� Dtyz 4Dt
 4Dt
n= �� 

negative image positive image 

Boundaries in two- and three-dimensional systems: 
The method of superposition described above for one-dimensional systems is readily 
extended to two- and three-dimensional systems. As an example, consider a three-
dimensional domain filled with a stagnant fluid (zero current). The system is bounded 
below by a solid plane at y = 0, such that the domain of interest occupies y � 0. The 
system is unconstrained in the x-z plane. A slug of mass, M, is released at the point (x, y, 
z)=0 at the time t = 0. Diffusion is isotropic and homogeneous. Note that because the 
source is located on the boundary, the gradient condition (3b) is insufficient to inhibit 
loss of mass from the real domain (y�0). A more general boundary condition is used, 

�C	 � � 2C �2C �2C
(16a) = D  2 + 2 + 2

�t	 � �x �y �z 

(16b) Initial Condition (t = 0): C(x) = M �(x) �(y) �(z) 
Boundary Condition: no-flux out of fluid domain at y = 0. 
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A general solution that satisfies the stated transport equation and initial condition is given 
by equation (25) in chapter 3, and repeated here for convenience. 

� 2 2 2M
 x
 y z

C(x, y, z, t) =
 exp
 -


( 4� t )3/2 D xDyD 4D t 4D t 4D t
z x y z 

In fact, this solution also satisfies the gradient expression for a no-flux boundary 
condition, e.g. as given in (3b). However, this solution does not conserve mass within the 
real domain, but rather allows half of the mass to diffuse into the region y < 0, violating 
the no-flux boundary condition. To satisfy the no-flux condition at y = 0, we must add 
an image source. The image of the real source, located at y = 0, across the plane y = 0 
will also be located at y = 0. Since the real and image sources are co-located, we need 
only add a factor of 2 to the solution given above. Additionally noting that the diffusion 
is isotropic (Dx = Dy = Dz = D), the solution to (16) is, 

-

x2 + y2 + z2M �


(17) C(x, y, z, t) = 2

( 4�Dt )3/2 exp .


� 4Dt


As a final case, we consider parallel boundaries in a three-dimensional system. The fluid 
domain is unconstrained in the x-z plane, but constrained in the y-direction by solid, 
planar boundaries located at y = ± L. There is no current and the diffusion is isotropic 
and homogeneous. An instantaneous release of mass, M, occurs at x = y = z = t = 0. The 
appropriate transport equation and initial conditions are, 

�C � � 2C �2C �2C
= D(18)
 , 
with C(x, y, z, t=0)) = M �(x) �(y) �(z).
+ +
2 2 2

�t
 �x
 �y
 �z


To satisfy either a no-flux or perfectly absorbing boundary condition, we will add image 
sources at positions corresponding to the mirror images of the real source across the 
planes y = ±L. The real source is located at (x=0, y=0, z=0). The image sources must be 
then be located at (x=0, y=2nL, z=0) with n = ±1, ±2, ±3 upward to ± infinity. If the 
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boundaries at y = ± L permit no flux, the image sources will all be positive, and the 
concentration field is described by, 

2 +  (y + 2nL)2 +  z2M � x

(19) C(x, y, z, t) =


4� Dt)3 / 2 � exp

n = �� 

-

4Dt
(


If the boundaries at y = ± L are perfect absorbers, both positive and negative image 
sources will be needed. The concentration field is can then be described by, 

(20) C(x, y, z, t)= 

2 + (y + (4n - 2)L)2 + z2 x2 + (y + 4nL)2 + z2M � x

+ exp


4� Dt)3 / 2  
n= �� 

-exp
 -
 -
 .

4Dt
 4Dt
(


Animation to Compare Perfectly Absorbing and No-Flux Boundaries ­
The animation on the chapter homepage examines the evolution of concentration after a 
slug mass is released mid-way between solid, parallel boundaries, as in Figure 4. Two 
scenarios are shown, perfectly absorbing and no-flux boundaries, using the solutions (19) 
and (20) above. For each system the concentration field is displayed in the plane z = 0. 
In addition, the concentration profile C(x=0, y, z=0) for each system is plotted for 
comparison on a single graph. 

Before you view the animation answer the following questions. 

1.	 The parallel boundaries are located at y = ± 70 cm, and the diffusivity is D = 1 cm2s-1. 
Estimate the time at which the boundaries will begin to impact the evolution of the 
diffusing cloud. 

2.	 For which boundary condition will peak concentrations decrease more rapidly? Why? 
3.	 What will be the final concentration in each system? 

As you view the animation consider the following. 

4.	 Based on the profiles at (x=0, y, z=0), at what time do the boundary conditions begin 
to impact the concentration field? How does this compare to your prediction in 1)? 

5.	 If the two profiles C(x=0, y, z =0) were not labeled, how would you identify the 
profile evolving with a no-flux boundary? with an absorbing boundary? 

6.	 Finally, consider the system with no-flux boundaries. Note that over time the profile 
perpendicular to the boundaries, C(y), becomes increasingly uniform. Eventually, 
this profile will be sufficiently uniform to consider the system well mixed in this 
dimension. Evolution of the cloud beyond this point in time will proceed as if the 
system were two-dimensional in x and z. This is discussed in more detail below. 
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Answers 
1.	 A common length scale for a diffusing patch defines the edge of the cloud at 2� from 

the centroid (chapter 1). Based on this definition, the cloud edge touches the 
boundary when L = 2� = 2 2Dt . With L = 70 cm and D = 1cm2s-1, t = 613 s. But, 
the 2� delineation of the cloud edge encompasses only 95% of the total mass in the 
cloud, such that at t = 613 s 5% of the mass has already reached and passed the 
boundary. A more conservative estimate would define the cloud edge at 3�, for 
which the edge of the cloud will touch the boundary at t = L2/(18D) = 270 seconds. 
At this time, only 0.3% of the mass has reached the boundary (chapter 1). 

2.	 The peak concentration should decay more rapidly in the system with absorbing 
boundaries, because the boundaries permit flux, and thus additional dilution, 
compared to the no-flux boundaries. 

3.	 Since each system is unconfined in x and z, the final concentration will be zero. 
4.	 Based on the animation, the two curves begin to diverge at about 250 seconds. This 

reasonably agrees with the time estimated for L = 3�. 
5.	 The boundary conditions are reflected in the profile shape at the boundary. For the 

absorbing boundary condition, �C/�y > 0 at y = -L and < 0 at y = +L, both of which 
indicate flux into the boundary. For the no-flux boundary, �C/�y = 0 at both 
boundaries. 

Time-scale for achieving a uniform condition between boundaries. 
We saw in chapter 3 that the transport equation is simpler in systems that may be 
approximated in reduced dimensions, e.g. two rather than three dimensions. When one 
first considers a system, it is therefore useful to determine whether a reduction in 
dimensions is possible. To eliminate a given dimension, e.g. y, one must show that the 
concentration is uniform in y, that is �C/�y = 0. If �C/�y = 0, then both the diffusive flux 
(D �2C/�y2) and the advective flux (v �C/�y) in y are eliminated, 

�y 

C�
+ u  + v  + w  

�2C 

�

C�2 �2C 

y 

�C �C
 �C

(21)
 = D 
 + +2 2 2

�t �x
 �z
 �x
 �z


reducing the transport equation to two-dimensions in x and z. For example, consider the 
system represented in the above animation with parallel, no-flux boundaries at y = ± L. 
Initially, the concentration field is three-dimensional with gradients in x, y, and z. Over 
time the profile perpendicular to the boundaries, C(y), becomes uniform. A temporal 
progression of C(y) is shown in Figure 5 below. The basic unit of time, L2/D, is selected 
from dimensional reasoning. From Figure 5, one sees that the system is uniform in y, i.e. 
perpendicular to the boundaries, at t = ty = (2L)2/4D, which is called the mixing-time. 
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y = 0 

y = +L 

y = -L 
Concentration, C(x = 0, y, z = 0) 

(2L)2 (2L)2 (2L)2 (2L)2 
t= t= t= t=

32D 16D 8D 4D 

Figure 5. A slug of mass is released at (x, y, z, t)=0 into a fluid domain that is unconstrained in 
the x-z plane, but is constrained by parallel, no-flux boundaries at y = +L and -L. The profiles of 
concentration, C(x=0, y, z=0), are plotted for several times after the release. The system is fully 
mixed (uniform) across the y-domain in a time t = (2L)2/4D. 

At times greater than the mixing time �C/�y = 0, and the system can be considered in 
two-dimensions (x and z) only. That is, for t > ty, the transport equation reduces to, 

�C ��2C �2C �
(22) = D

� 2 + 2 �
, 

�t ��x �z �

and the evolution of concentration is described by the solution for an instantaneous, 
point-release in two-dimensions (see chapter 3), that is for t > ty 

M � x2 +  z2 � 
(23) C(x,z, t) = exp��- �� ,

(2L) 4�Dt � 4Dt � 

where (2L) is the length-scale of the now neglected dimension. 

Definition of Mixing Time 
For a generic system, we define the length-scale of interest as the full width of the 
domain in a given direction, e.g. Lx, Ly, Lz. If mass is released in the center of the 
domain, the time-scales required to achieve uniform conditions in each dimension is, 

(24) Mixing Time ti = Li
2/4Di , where i = x, y, z. 

While the above time scale is a standard definition, from Figure 5, we can see that nearly 
uniform conditions are approximated at the shorter time Li

2/8Di. 


