
PROBLEM SET 3 - SOLUTIONS 

 

Comments on Problem Set 3 

 

PROBLEM 1: 

 

- Remember that we want the flownet to be formed by square cells. Many of your flownet cells in the 

region next to the gate didn’t look very square. This means that your streamlines are not right (so you 

are not capturing how the fluid flows) and that you don’t have enough precision to obtain vt from the 

flownet in part c. Some groups got a weird-looking flownet because they forced the streamlines to be 

equally spaced under the gate (see second sketch in next page). This doesn’t happen in reality, so 

these groups were unable to get square cells. In reality, the flow is only uniform far upstream and far 

downstream the gate. In the gate region, since all the flow is forced to pass under the gate, we will 

have a larger velocity next to the tip of the gate than next to the bottom of the duct. For this reason, 

the streamlines are not equally spaced in this region, but closer to each other next to the tip of the 

gate. 

 

- In part b, v0 = v1  because of conservation of volume. The only condition required for conservation 

of volume to be true is that the fluid is incompressible. Some of you claimed that  v0 = v1  only if we 

neglect viscosity. This is not the case: v0 = v1  is true even if we have viscous effects. 

 

- Bernoulli equation is only applicable 

between two points on the same streamline!! 

To relate the pressure at “T” with the pressure 

at “0T” (see sketch) on part d, many groups 

applied Bernoulli between the point “0T” and 

“T”. However, the flownet shows you that 

“0T” and “T” are on different streamlines, so 

you cannot apply Bernoulli to relate their 

pressure values! It happens that, in this 

problem, the result you get by applying 

Bernoulli between “0T” and “T” is the right 

one (but this is by luck!) The reason of this 

“lucky coincidence” is that all points at the 

inflow (section I-I) have the same value of 

p+ρgh (because flow is well behaved in I-I and pressure varies hydrostatically), and also the same 

value of the velocity (because flow is uniform at the inflow). However, this is just luck, and in 

general you can only apply Bernoulli between two points on the same streamline. 

 

- Many people got confused about how to solve “weirdos” (the non-square looking cells next to 

corners). Prof. Madsen said that you can check whether your “weirdo” is ok by subdividing it (i.e., 

interpolating one streamline and one equipotential line) and seeing if the “sub-weirdos” look square. 

However, this is only going to work if your “weirdo” has about the same “horizontal” and “vertical” 

dimensions to start with! Some of you got “weirdos” that looked very far from squares (with one 

dimension much larger than the other) and tried to justify that they were ok by interpolating a 

streamline and dividing the rectangular “weirdo” into two squares… Nonononono… You have to 

interpolate one streamline AND one equipotential line, otherwise you are cheating! If your “weirdo” 

looks very non-square (i.e., long and thin) to start with, you have to modify your flownet. Let’s 

analyze a couple of examples: 



 

 

This is an example of a reasonably good flownet. I have 

subdivided the upper-right weirdo (the one inside the 

circle) twice. First, I introduced a new streamline AND a 

new equipotential line (both are drawn as solid lines) to 

get four sub-weirdos that look reasonably square. Again, 

I subdivided the two upper sub-weirdos (now I used 

dashed lines) and get sub-sub-weirdos that are again 

reasonably square. Therefore, I conclude that the 

flownet looks right. 

 

 

 

This is an example of a bad flownet (copied from one of 

the answers to the problem set). The upper right weirdos 

look very long and thin, that is, not square at all. No 

matter how you try to subdivide them, there is no way 

you can get sub-weirdos that look square (unless you 

cheat interpolating streamlines only!). At the same time, 

the lower right cells look quite short and fat. The way of 

fixing this flownet is by re-drawing the streamlines 

upwards, and modifying the equipotential lines 

accordingly, to get something similar to the flownet in 

the previous example. Note that this correction is going 

to make the streamlines closer to each other near the tip 

of the gate, and therefore the value of vt from the 

corrected flownet is going to be larger. 

 

 

PROBLEM 2: 

 

- Most groups did well on this problem. However, most of you didn’t explain why the highest point 

of the siphon is the most critical one (i.e., has the smallest pressure). To justify this, you apply 

Bernoulli along the pipe (you can do this because the streamlines go along the pipe). Since p+ ρgh + 

ρv
2
/2 is constant along the pipe, and continuity dictates that velocity is the same everywhere, the 

pressure will be smallest when h is highest, i.e., the smallest pressure happens at the highest point. I 

guess most of you knew this, but many of you didn’t write it down (and lost a couple of points). As 

we (David and Sal) have already said a few times, many of the groups should give more details about 

their assumptions and calculations. 

 

 PROBLEM 3: 

 

- You also did pretty well on this one, in general. Remember that if V(centerline) is within 3% of 

V(average), this means that  0.97 V(ave) < V(cl) < 1.03 V(ave). Some groups considered only one of 

the two limits. And again, try to give more detailed explanations of your solution procedure. Many 

groups didn’t explain very well how they got the result from the spreadsheet (the problem said “be 

sure to include sample calculations”!) And it’s considered not being nice with the TA to hand in a 

problem with a bunch of numbers and equations and not a single word…  



 

COMMENTS ON PROBLEMS 4 TO 6: 

 

Almost all groups made many careless math errors throughout (i.e. negative signs, etc). Always 

remember to go back and make sure your answer makes physical sense - this will help you catch 

some of these errors. 

 

Problem #4: 

For parts c and d, the change in H over change in time is equal to (-) w_i. A few groups forgot the 

negative sign here - it indicates a downwards velocity (assuming positive is in the upwards direction). 

For part f, many groups forgot the extra r when integrating over the area (2*pi*r*dr). Also, when 

substituting d_i/2 in for r in part f, some groups forgot to also raise the denominator to the power (i.e. 

r
4
 = d_i

4
/16). 

 

Problem #5: 

It seemed that a few groups had a bit of trouble developing the underlying concept of the problem - 

that the rate of change of the number of particles  = (inflow + source) - (outflow + sink). Thus, the 

governing equation ends up as a differential equation. 

 

Problem #6: 

Many groups got a bit tripped up with calculating the angle in part b. This was mainly because of 

radian -> degree conversion or because they forgot to convert omega into rad/s from rps. On the last 

part, some groups got an incorrect value for lift force which made it seem like the model was valid 

mathematically. However, no qualitative reasoning were provided to back up the calculations. 

Always revisit your assumptions when commenting on how well a model approximates. Even if you 

think your answer is correct, taking a look at the assumptions (i.e. modeling a sphere as a cylinder) 

might show some incosistency. 

 

 

 

 

GOOD LUCK ON THE TEST!
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Problem 3.22 in Munson, Bruce R., Donald F. Young, and Theodore H. Okiishi. Fundamentals of Fluid Mechanics. 
Instructor's Manual. 2nd ed. New York, NY: John Wiley & Sons, Inc., 1994, pp. 3-20.





















 




