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Stresses/Deflections Shafts in Torsion

8.1 An Introductory Exercise 

We return to the problem of torsion of circular shafts. We want to develop meth-

ods to determine the shear stress distribution over the cross-section of the torque-
bearing structural element and the rotation of any cross-section relative to 

another. Although we limit our attention to circular cross-sections, this ought not 

to be taken to imply that only circular shafts are available to carry torsional loads. 

For example: 

Exercise 8.1 

A single bay of a truss structure, typical of the boom of a construction 
crane, is shown below. Show that the torsional stiffness of the section 1-2-
3-4 relative to the other, fixed section, is given by 

MT = KT φ ⋅ where KT = 2( AEa) ⋅ ( cosα) 3 

4 3 

1  2 

5  6 

7 

L 

y 

x 

z a 

a 

α 

α 
u1 

v1 

t16 

i 

j 

k 

Mt 

L 

LL 

l 

α 

2In this, cosα = a/√ (a +l2) and φ is the rotation of the section 1-2-3-4. 

To determine a stiffness we must necessarily consider displacements of the 

structure at the four, unconstrained nodes. But since we are only interested in the 

torsional stiffness, that is, the relation between a torque applied at the free end 

section and the rotation of that same section, our task is lighter. 

Our method of analysis will be a displacement formulation. That is, we will 

impose a displacement field of a particular kind, namely a rigid body rotation of 
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the plane section 1-2-3-4 about the z axis of the structure and determine what 

forces are required to be applied at the nodes to maintain the displaced configura-

tion. Rigid here means that none of the truss members lying in the plane of this 

section experience any change in length; their end nodes retain their same relative 
positions - the square section remains a square. 

The figure shows the imposed rotation about the z 
axis; the rotation φ is understood to be small in the sense = φ a⋅ ⋅ ( 2) ⁄ 2u1 

that the magnitude of the displacements of the nodes can 

be taken as the product of the half-diagonal of the section 
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and the angle. Vector expressions for the displacements 

are then: 

u1 = (a ⁄ 2)φi + (a ⁄ 2)φj u2 = (a ⁄ 2)φi–(a ⁄ 2)φ j


u3 = –(a ⁄ 2)φi–(a ⁄ 2)φj u4 = –(a ⁄ 2)φi + (a ⁄ 2)φj


Now if the truss members lying in the plane of the section do not deform, they 

do not offer any resistance to rotation. But then what members do resist this par-

ticular displacement field and provide the torsional stiffness? 

We inspect them all. Consider member 1-5: If we do not allow a z displace-

ment, its change in length will be zero. It is zero because, even though node #1 

displaces relative to node #5, the displacement vector of #1 is perpendicular to the 

member; the projection of the displacement upon the member is zero. The same 

can be said about members 2-6, 3-7, and 4-8. 

The same cannot be said of member 1-6, or any of the other diagonal mem-

bers. The displacement of node #1 does have a non-zero projection upon the mem-

ber 1-6, a projection tending to decrease its length when φ is positive as shown. To 

determine the magnitude of the contraction (as well as certifying that indeed the 

member does contract) we proceed formally, constructing a unit vector along the 

member in the direction outward from node #1, then determine the projection by 

taking the scalar product of the displacement and this unit vector. The unit vector 

is t16 = – cos α ⋅ i + sin α ⋅ k . The change in length of the member is then 

δ16 = t16 • u1 = –(a ⁄ 2)φcos α 
Less formally, we can try to visualize how the displacement does produce a 
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contraction. We show a top view: 

We note that, of the two scalar components of u
1
, the y component, (a/2)φ j - j 

out of paper - will be perpendicular to the member and hence it will not change 
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the member’s length in any way. The same cannot be said for the other component, 

the x component (a/2)φ i. 
Hopefully it is clear that the projection of this component along the member is 

just (a/2)φ cosα as obtained from the dot product. Note that it acts to shorten mem-

ber 1-6. Similarly, the other diagonal members, 2-7, 3-8, and 4-5 will also contract 

and by the same amount. 

Using a similar argument, we can show that members 2-5, 3-6, 4-7 and 1-8 will 

extend the same amount. 

Compressive and tensile forces will then be engendered in the diagonals by 

this particular displacement field and it is these which resist the applied torque. 

5 6 To see how, we make an isolation of the 

sections and require moment equilib-

rium about the z axis. 

First note that force equilibrium in the 

three coordinate directions x, y, and z is 

satisfied: Since all eight diagonal mem-

bers experience the same magnitude of 

7 extension or contraction the tensile or 

compressive force each will experience 

will be of the same magnitude. So at 
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each node, the z component of one in 
4 a 3 

tension will just balance the z compo-

nent of the another in compression. 

We denote the value of the tensile load by f. Assuming a linear, elastic force-

deformation relationship for all diagonal members of cross-sectional area A and 

elastic modulus E, we can write: 

f = ( AE  ⁄ L)  δ  ⋅ 

The magnitude of the extension or contraction of each diagonal is the same

δ δ  16= ( a ⁄ 2 ) ⋅ ⋅  cos α= φ 

-------- -------- φso f =  AE δ ⋅ =  AE ⋅ ( a ⁄ 2 ) ⋅ φ ⋅ cos α = ( AE ⁄ 2 ) ⋅ ⋅  cos α 2 

 L   L  

awhere we have used the fact that L = ------------
cos α 

Now each of the diagonal members produces a moment about the z axis. More 

precisely, the horizontal components of the member forces in the top and bottom 

diagonals and the vertical components of the member forces in the diagonals 

along the sides each contributes a moment of magnitude f cosα (a/2). All eight 

together then provide a torque resisting the imposed rotation φ of 

MT = 4af ⋅ cos α = 2aAE( cos α) 3 φ ⋅ 
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Here, then, is a structure capable of resisting torsion about its axis. 

Observe that: 

•	 The units check. AE has the units of force since E the elastic modulus, has 
the units of stress or force per unit area: a has the dimensions of length so 
the right-hand side has the dimensions of the left, that of force times 
length, that of a moment or torque. 

•	 As we increase the length of the bay relative to the length of the side of the 
square cross-section, the angle α increases, cosα decreases, and the tor­
sional stiffness decreases - and dramatically since it goes as the cube of 
the cosine. 

•	 The relationship between torque and rotation φ is linear because we 
assumed small displacements and rotations. 

•	 Imagine a structure built up of many of these bays fastened together. If this 
structure includes ten bays aligned along the z axis, then the torsional stiff­
ness would be one-tenth the value obtained for one bay alone since the 
over-all rotation would be the sum of ten relative rotations of the same 
magnitude. The torque acting on each bay is the same. We might say the 
total angular rotation is uniformly distributed over the full string of ten 
bays. 

•	 We can go back and determine the forces and/or normal stresses in the 
diagonal members given an applied torque M . We have: 

T

MT = 4af ⋅ cos α so f = MT ⁄ (4acos α) 

•	 Finally, the structure is redundant. We could remove some members and 
still carry the load. But note that if we remove one of diagonal members 
from each of the four sides of the bay our equilibrium requirement in the z 
direction would not be satisfied by the force system posed. We would have 
to apply a force in the z direction at each node in order to maintain our pre­
scribed displacement field. Without this additional constraint, the nodes 
would displace in the z direction and in an un-rotationally symmetric fash­
ion. Our analysis would not go through. 

In analyzing the torsion of a circular shaft we will proceed much the same way 

as above. We will first consider deformations due to a relative rotation of two sec-

tions of the shaft and, on the basis of symmetry, construct a compatible strain 

state. The stress-strain equations give a corresponding stress distribution— one 

which consists solely of a shear stress acting in the plane of the cross-section. 

Equilibrium, repeating the maneuvers of a previous chapter, then brings the 

applied torque into the picture and we end with an equation relating the applied 

torque to the rotation of the shaft, a stiffness relation in form like the one derived 

above for the truss bay. 
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8.2 Compatibility of Deformation 

The cross-sections of a circular shaft in torsion rotate as if they were rigid in-

plane. That is, there is no relative displacement of any two, arbitrarily chosen 

points of a cross section when the shaft is subjected to a torque about its longitu-

dinal, z, axis. We prove this assertion relying on rotational symmetry and upon the 

constancy of the internal torque as we move down the axis of the shaft. 

We first show that radial lines must remain straight by posing that they deform, 

then show a contradiction results if we do so. 

Mt 

Mt 

Let the points along a radius take the shape of a curve in plane in the deformed 

state: Now consider the same set of points but from the perspective of someone 

who has the portion and the shaft to the right to observe. He or she would neces-

sarily see the deformed locus as shown if the same moment is to have the same 

effect. Now, however, the two cannot be put back together without leaving a hole 

within the interior. The two displacement fields are incompatible. 

The only displacement pattern that will fit back together is if the locus is again 

a straight line. 

It is still possible that, while radial lines remain radial, there could be some 

sort of accordion effect as we march around the axis of the shaft – some radial 

lines coming closer together, others widening the angle between them. But no, this 

is not possible since we have complete rotational symmetry. Whatever happens at 

one angular position must happen at every other angular position. 

There remains the possibility of out of plane bulging-out and/or dishing-in. 

While these would not violate rotational symmetry, we rule them out using the fol-

lowing argument based upon the fact that the torque does not vary as we move 

along the axis of the shaft. 

We posit a bulging-out on a section of shaft when we apply a clock-wise 

moment. Running around to the other end of the section, we would claim a bulg-

ing-out there too, since the moment is again directed along the axis of the section 

in the same sense. But now consider the portion of the shaft to either side of the 

cut section. To be consistent, their cross-sections will bulge out. This is clearly an 

incompatible state of deformation. On the other hand, if it dished-in, then we 

would have a torque, the same torque producing two dramatically different effects. 
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This argument also rules out a uniform extension or contraction of the cross-sec-

tion. 

Thus, no bulging-out, no dishing-in, radial lines remain radial - a cross-section 

rotates as a rigid plane. 

One further fact follows from the uniformity of torque at each section, namely, 

the relative rotation of two cross-sections is the same for any two sections sep-
arated by the same distance along the axis of the shaft. 

If we let φ be the rotation of any section, then this is equivalent to saying

 dφ/dz is a constant 
Consider now the strains due to 

the rotation of one section relative 

to another. 

The figure shows the rotation 

of a section located along the axis 

at z+∆ z relative to a section at z 
just below it. Of course the section 

at z has rotated too, most likely. 

But it is the relative rotation of the 

two sections which gives rise to a 

strain, a shear strain. γ, which 

measures the decrease in right 

angle, originally formed by two line segments, one circumferential, the other axi-

ally directed as shown. From the geometry we can state: 

r 

∆φ 
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∆z 
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z +∆z 
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γ(r) 

⁄γ = lim (r∆φ ∆z ) = r
dφ 

∆z → 0 z d 
Note that this relationship shows that the shear strain is a linear function of 

radius - zero at the axis, maximum at the shaft’s outer radius. Note too that, with 

dφ/dz a constant, the shear strain does not vary with z with position along the axis 

of the shaft. 

There are no other strains! With no deformation in plane and no bulging-out or 

dishing in, there are no other strains. If there existed some asymmetry like that of 

the truss bay structure with one diagonal number removed from each bay, then we 

would not be able to rule out a contraction (or extension) in the z direction. 

8.3 Constitutive Relations 

Because we have but one strain component, this will be a very short section. The 

corresponding stress is the shear stress τ and is related to the shear strain accord-

ing to: 

τ Gγ G r  
dφ 

   
 ⋅= = 

z d 
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8.4 The Torque-Rotation Stiffness Equation 

Back in Chapter 3, we obtained an expression for resultant torque about the axis 

of a circular shaft due to a shear stress distribution τ(r), an arbitrary function of r. 
R 

We obtained. MT = 2π τ r( )r2 rd ∫ 
0 

Now, with our linear function of r, we can carry out the integration. Doing so 

we obtain a relationship between the applied torque M and the rate of rotation 
T 

R 

dφ/dz, a  stiffness relation. MT = 2π∫G
dϕ 

r 
3

rd or, since dφ/dz and G are constants, 
z d 

0 

we are left with the integral of r 3 and can write 

MT GJ 
dφ 

   
 = 

z d 

where J is a function only of the geometry of the cross-section - its radius R. You may 
have encountered it as the polar moment of inertia J = r 

2
Area d For the solid circu-∫ 

lar shaft J = π R4/2.	 Area 

This stiffness equation is analogous to the stiffness relationship derived for one 

bay of the truss structure considered at the outset of the chapter. For a shaft of 

length L, the rotation of one end relative to the other is just the integral of the con-
stant rate of rotation over the length, that is, just the product of the two. We 

obtain then: MT GJ L⁄( ) φ⋅= 

This is our major result. Observe 

•	 We can obtain the shear stress and strain distribution in terms of the 
applied moment by substitution. We obtain 

τ r( )  r MT J⁄( )⋅= 

γ r( )  r MT GJ( )⁄⋅= 

•	 Our analysis is identical for a hollow shaft. All of the symmetry arguments 
apply. Only the expression for J changes: It becomes

4J	 = ∫ r 
2

A d = (π ⁄ 2)(R4 – Ri )o 
Area 

where R  is the outer radius and R  the inner radius of the shaft.
0	 i
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•	 If we do anything to destroy the rotational symmetry, all bets are off. In 
particular if we slit a hollow tube lengthwise we dramatically decrease the 
torsional stiffness of the tube. 

If we have a composite shaft of two concentric 
shafts, or more, the analysis will go through as fol-

lows: 

The symmetry arguments still apply; the strain as 

a function of radius remains linear and proportional 

to the rate of twist γ = rdφ/dz 
But now our shear stress distribution is no longer 

the same. Within region 1, the core shaft we have

1 2
 z 

dφ	 dφ 
= G1 ⋅ ⋅  and τ2 = G2 ⋅ ⋅   within region 2, the concentric outer shaft. r	 rτ1 z d	 z d 

The equivalent moment is then MT = ∫ rτ1dA1 + ∫ rτ2dA2 which yields 

A1 A2 

dφ dφ
MT = [G1J1 + G J2 ]  = (GJ )   

    z d z d 

The shear strain distribution is then γ = rMT (GJ ) with the shear stress dis-

tribution within each region is given by 

τ1 = [G1 ⁄ (GJ )]rMT τ2 = [G2 ⁄ (GJ )]rMT 

Note that, although R > R
1 

the maximum shear stress might occur at the outer-
2 

most radius of the inner shaft if G >G .
1 2

Exercise 8.2 

A torque MT of 20 Nm is applied to the steel shafts geared together as 
shown. Now show that 

•	 The internal force acting between the gear teeth is 800. N. 

•	 The maximum shear stress due to torsion is 204MN/m 2 and occurs in the 
smaller diameter shaft at its outer radius. 
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•	 The torsional stiffness, Kφ, at the end where MT is applied is 44.35 Nm/ 
radian.. 

Ø150 mm 
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Ø25 mm 
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R.25 mm 

shaft #2 

shaft #1 

Reid: Hey Katie, you do the first part and I’ll do the second, ok? 

Katie: Well, I don’t know; usually when the author puts out a sequence of 
questions like this it’s best to go through step by step. 

Reid: That’s only for the do-do’s who need their hand held. See, I got the 
second question wired. It goes like this: the torque is the same in both, right? 
And the radius of the shaft that’s fixed to the wall is biggest and because the 
maximum shear stress in a shaft is at the biggest radius, I just plug into the 
formula for shear stress and I’ve got it. 

Katie: I think you’re wrong Reid, I think we should go slower, take things 
step by step. 

Reid: You’re just jealous because you girls can’t see things as quick as us 
guys. 

Katie: It appears that you’re so quick you didn’t even need to read the prob­
lem ..... it says right there that the maximum shear stress occurs in the 
smaller diameter shaft! 

Reid: Maybe the answer given is wrong. Stuff in these books are wrong lots 
of time. I mean look at that equation for shear stress

 τ  = rM /J.
T

See that little old radius there up top? Now when that r maxes out so does τ. 

Katie: But Reid, that little old J depends on r too. In fact, for a solid shaft it 
goes as the fourth power to the radius so it predominates. 

Reid: Predominates.... You’re saying the smaller radius shaft has maximum 
shear stress for the same moment? 
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Katie: Hold on, hold on. The maximum shear stress depends upon the 
moment in the shaft as well.. that “little old” M

T 
right there. So we have got 

to first see which shaft carries the largest torque, and then... 

Reid: But the torques are the same in both shafts! 

Katie: ...same in both shafts. Where do you get that from? 

Reid: I dunno...conservation of torque, I guess...it just feels right. 

Katie: You men are all alike. What have feelings have to do with it? Watch 
me: I isolate the shaft carrying the torque M

T
, just like the author did with 

that interesting historical example of a human powered, well-water lift. See, 
I draw this figure: 

Mt 

R 1 

Bearing Reaction 

Bearing Reaction 

F Tooth 

Now moment equilibrium about the axis of the shaft gives me that force on 
the tooth is going to be 

F  = M /R  where R
1
 is the radius of the small gear. 

Tooth T 1


Reid: So.....


Katie: Well, then I turn to the other shaft and find that the torque is M  = 
/R

1
)M

T
, which, my friend, is not equal to, but three times theR

2
F

Tooth
= (R

2
2

applied torque, M
T
. So, Reid, you see how your feelings can lead you 

astray? 

**** 
Katie is correct, as is the book. The torque in the shaft fixed to the wall is three 

times the torque carried by the free-ended shaft. Even so, because the shear stress 

is more sensitive to changes in the radius of a shaft than to torque, it is the smaller 

shaft that sees the largest shear stress. If both the shafts had the same radius, the 

one fixed to the wall would indeed show the largest shear but that is not the case 

here. I could make up another story about how, with less of a radius, the smaller 

cross-section must experience a greater stress at each and every position r in order 

to sum to the same moment.

 The work follows: 

The maximum stress in shaft #2 is τ
2
|
max 

= r
2
M 

2
/J

2 
which, with J=π r 4

/2 gives 
2 
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τ 
2
|
max

 = 39.2 MN/m 2 

while for shaft #1 we obtain  τ |  = 204 MN/m 2 

1 max

The torsional stiffness at the end where the movement is applied is obtained by 

summing up the relative angular deflections of the two shafts being careful to 

assure compatibility of deformation at the section where the gears mesh. Working 

from the wall out, the angular rotation of the geared end of shaft #2 relative to its 

(fixed) end is  φ
2
(L

2
)= (M

2
L

2
)/(GJ

2
) 

Now, compatibility of deformation, 

no-slip at the gear teeth requires that

 φ  
2
(L

2
)R  = φ

1
(0)R

2 1 

where the directions of the angular rotations 
are indicated in the figure. So we have 

φ
1
(0)=(R /R

1
)(M

2
L

2
)/(GJ

2
)

2


Now the relative rotation of the free


φ2 

R2 

φ1 

R1 

φ2 R2 = φ1 R1end of the small shaft to which the 

torque is applied is given by 

φ
1
(L

1
) - φ

1
(0) =(M

1
L

1
)/(GJ

1
) 

So 

φ
1
(L

1
) = (M

1
L

1
)/(GJ

1
) + (R /R

1
)(M

2
L

2
)/(GJ

2
)

2


Substituting for M
1
, M  we can write


2

 φ 
1
(L

1
)=(M

1
L

1
)/(GJ

1
)[1 + (R /R

1
)
2
(L /L

1
)(J /J

2
)]

2 2 1

So Kφ =(GJ /L
1
)/[1 + (R /R

1
)2(L /L

1
)(J /J

2
)]. which gives Kφ= 44.35 NM/radian 

1 2 2 1

Observe: 

•	 Although only numerical results were required to be verified, I worked 
through the problem symbolically refraining from plugging-in until the 
end. This is highly recommended practice for it allows me to keep a check 
on my work by inspecting the dimensions of the results I obtain. 

•	 Note, too, how I can readily extend my results to other configurations ­
changing the relative length of the shafts, their radii, and the material out 
of which they are made. 

•	 The maximum shear stress is quite large relative to the yield stress of steel. 
We shall see that yielding becomes a possibility when the maximum shear 
stress is one-half the yield strength in a tension test. 
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8.5 Torsion of other than circular shafts 

We have already stated how, if a shaft does not exhibit symmetry, our analysis of 

deformation does not apply. A slit hollow tube, for example, behaves dramatically 

different from a continuous hollow tube. 

Considerable effort has been 

expended by applied mathematicians 

over a century or two in developing solu-

tions for the torsion of shafts of other 

than circular cross section. The results 

for a shaft sporting a rectangular cross 

section are well documented1. The figure 

at the right is a classic. 

The distorted shape – note the warp-
ing of the originally plane cross section – 

is due, in part, to the fact that the shear stresses at the corners must vanish. 

Other results say that the maximum shear stress occurs in the middle of the 

longest side of length b. Its magnitude and that of the torsional stiffness are neatly 

summarized below.  τ  | = M /[k
2
(2a)

2
(2b)]max t

is the maximum shear stress. And  M = K φ/L where K = k G(2a)3(2b)
t t t 1

is the torsional stiffness. Note: a and b are the dimensions of the cross-section. Values for 
the constants k and k

2 
as functions of the ratio of the lengths of the sides of the cross sec­

1 
tion are given in the table below, again taken from Timoshenko and Goodier. 

1. The results presented here are drawn from the classic text about stress and strain – Timoshenko and Goodier, 
THEORY OF ELASTICIY, Third Edition, McGraw-Hill, 1970. 
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Design Exercise 8.1 

A hollow aluminum shaft, two meters long, must transmit a torque of 20 KNm. 

The total angle of twist over the full length of the shaft is not to exceed 2.0
o
, and 

of course, we do not want the shaft to yield. Size the outside and inside diameters 

of the shaft. 
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8.6 Problems – Torsion of Circular Shafts 

8.1 What if a solid circular shaft is replaced by a square shaft whose diagonal 
is equal to the diameter of the original circular shaft; How does the torsional 

stiffness change; For the same torque, how does the maximum shear stress 

change? 

What if the solid circular shaft is replaced by a square shaft whose side is equal 

to the diameter of the original circular shaft; How do these change? 

8.2 Estimate the maximum 

shear stress in the square, 

center-post shaft of the drive 

transmission system shown 

below when the horse is 

delivering α horsepower where 

α < 1.0. (1 horsepower = 746 

Watts = 550 ft-lb/sec) Estimate 

the maximum stress due to 

bending in the sweep arm. 

Estimate the tension in the belt 

(not shown) that would be 

placed over the driving pulley. 

This style of horse power is very convenient and popular, because, owing to its construction, it has 

many advantages not found in down powers. It is especially adapted for use in a barn where several 

horses are kept, or in small livery stables. The power can be bolted to the timbers above the driveway 

and machines can be set on the floor either above or below the power. When not in use the center post 

can be lifted from its socket and put out of the way, leaving the floor clear for other purposes. Then 

when power is to used again all that is necessary is to set the post in place, hitch the horse to the sweep 

and go ahead. The center post which we furnish is made of 6-inch by 6-inch timber and is 12 feet long. 

It is amply strong and can be cut to any desired length. The 1 1/8-inch driving shaft, to which the pul-

ley is attached, is regularly made so that the measurement from center of master wheel to center of pul-

ley face is 3 feet 3 inches, but additional shafting can be coupled to this shaft so as to change position 

of pulley or allow the use of other pulleys. The driving pulley is 18 inches in diameter with 3-inch face 

and makes 37 1/3 revolutions to one round of the horse, or about 135 revolutions per minute. Addi-

tional shafting or change in size of pulley is extra. Length of sweep from center post to eye-bolt is 7 

feet 6 inches. For driving small feed cutters, corn shellers, feed grinders, wood saws, etc., this power 

cannot be excelled. Weight, 450 pounds. Shipped direct from factory in Southeastern Wiscon-

sin. No. 32R1823 

..............................................................................................................$18.452
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8.3 A thin Aluminum tube, whose wall thickness is 1 mm, carries a torque 

80% of the torque required for the onset of yield. The radius of the tube is 20 mm. 

Show that an estimation of shear stress, based upon the assumption that it is 

uniformly distributed over the thickness of the tube (and using an estimate of J 
that is linear in the wall thickness), gives a value within 10% of that computed 

using the full expressions for shear stress and polar moment of inertia. 

8.4  A solid aluminum, circular shaft has length 0.25 m and diameter 5 mm. 
How much does one end rotate relative to the other if a torque about the shaft axis 

of 10 N-m is applied? 

8.5 A relatively thin walled 

tube and a solid circular shaft 

R

t 
have the same cross-sectional 

area. You are to compare the 

torsional stiffness of one to the 

other. r 
4a) What does the phrase “tor-

~ 
sional stiffness” mean? 2πRt = A = πr2 

4b) What is the ratio of the 

torsional stiffness of the tube to 

that of the solid shaft? 

8.6 A composite, cylindrical shaft has a 

core of one material, #1, bonding firmly to an 

outer, concentric, hollow shaft of another 

material, #2. It can be shown that the shear 

strain at any radial distance r from the center of 

the shaft is still given by 

1 

2 
Mt 

d φγ = r ⋅ 
z d 

ie., as if it were a solid, homogeneous shaft. 

Let R1 be the radius of the core, R2 that of the hollow shaft, take G2 = G and 

G1 = 2G respectively be the shear modulus of the two materials, construct an 

expression for the shear stress distribution as a function of r in terms of the 

applied torque and other relevant properties. 

2. 1902 Edition of The Sears, Roebuck Catalogue. 




