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Strain 
The study of the elastic behavior of statically determinate or indeterminate truss 

structures serves as a paradigm for the modeling and analysis of all structures in 

so far as it illustrates 

•	 the isolation of a region of the structure prerequisite to imagining internal 
forces; 

•	 the application of the equilibrium requirements relating the internal 
forces to one another and to the applied forces; 

•	  the need to consider the displacements and deformations if the structure 
is redundant; 1 

•	 and how, if displacements and deformations are introduced, then the con­
stitution of the material(s) out of which the structure is made must be 
known so that the internal forces can be related to the deformations. 

We are going to move on, with these items in mind, to study the elastic behav-

ior of shafts in torsion and of beams in bending with the aim of completing the 

task we started in an earlier chapter – among other objectives, to determine when 

they might fail. To prepare for this, we step back and dig in a bit deeper to develop 

more complete measures of deformation, ones that are capable of taking us 

beyond uniaxial extension or contraction. We then must relate these measures of 

deformation, the components of strain at a point to the components of stress at a 
point through some stress-strain equations. We address that task in the next chap-

ter. 

We will proceed without reference to truss members, beams, shafts in torsion, 

shells, membranes or whatever structural element might come to mind. We con-

sider an arbitrarily shaped body, a continuous solid body, a solid continuum. We  

put on another special pair of eyeglasses, a pair that enables us to imagine what 

transpires at a point in a solid subjected to a load which causes it to deform and 

engenders strain along with some internal forces - the stresses of chapter 4. In our 

derivations that follow, we limit our attention to two dimensions: We first con-

struct a set of strain measures in terms of the x,y (and z) components of displace-

ment at a point. We then develop a set of stress/strain equations for a linear, 
isotropic, homogenous, elastic solid. 

1.	 We of course must consider the deformations even of a determinate structure if we wish to estimate the dis-
placements of points in the structure when loaded. 
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6.1 Strain: The Creature and its Components. 

When a body displaces as a rigid body, points etched on the body will move 

through space but any arbitrarily chosen point will maintain the same distance 

from any other point–just as the stars in the sky maintain their position relative to 

other all other stars, night after night, as the heavens rotate about the earth Except, 

of course, for certain “wandering stars” which do not maintain fixed distances among 

themselves or from the others. 

But when a body deforms, points move 

relative to one another and distances between 

points change. For example, when the bar 

shown below is pulled with an end load P 
along its axis we know that a point at the end 

will displace to the right, say a distance uL, 

relative to a point at the fixed, left end of the 

P 

L 

L 

uL 

Pbar. 

Assuming the bar is homogenous, that is, 

its constitution does not change as we move 

in from the end of the bar, we anticipate that 

the displacement relative to the fixed end will decrease. At the wall it must be 

zero; at the mid point we might anticipate it will be uL/2. Indeed, this was the 

essence of our story about the behavior of an elastic rod in a uniaxial tension test. 

There we had P = ( AE  ⁄ L)  δ  ⋅ = k δ ⋅ 
The stiffness k is inversely proportional to the length of the rod so that, if the 

same end load is applied to bars of different length, the displacement of the ends 

will be proportional to their lengths, and the ratio of δ to L will be constant. 

In our mind, then, we can imagine the horizontal rod shown above cut through 

at its midpoint. As far as the remaining, left portion is concerned, it is fixed at its 

left end and sees an a load P at its right end. Now since it has but half the length, 

its end will displace to the right but uL/2. 

We can continue this thought experiment from now to eternity; each time we 

make a cut we will obtain a midpoint displacement which is one-half the displace-

ment at the right end of the previously imagined section. This of course assumes 

the bar is uniform in its cross-sectional area and material properties —that is, the 

bar is homogeneous. We summarize this result neatly by writing 

u x( )  = ( uL ⁄ L) ⋅ x 

where the factor, (uL/L), is a measure of the extensional strain of the bar, defined as the 
ratio of the change in length of the bar to its original length. 

This brief thought experiment gives us a way to define a measure of exten-

sional strain at a point. We say, at any point in the bar, that is, at any x, 

ε = lim (∆ u ⁄ ∆ x) ⇒ ε = ∂ u 
x 

∆ x → 0 
x ∂ x 
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For the homogenous bar under end load P we see that ε is a constant; it does 
x 

not vary with x. We might claim that the end displacement, uL is uniformly dis-
tributed over the length; that is, the relative displacement of any two points, equi-

distant apart in the undeformed state, is a constant; but this is not the usual way of 

speaking nor, other than for a truss element, is it usually the case. 

The partial derivative implies that, u, the displacement component in the x 
direction, can be a function of spatial dimensions other than x alone; that is, for an 

arbitrary solid, with things changing as one moves in any of the three coordinate 

directions, we would have u= u(x,y,z). We turn to this more general situation now. 

Exercise 6.1 

What do I need to know about the displacements of points in a solid in order 
to compute the extensional strain at the point P, arbitrarily taken, in the 
direction of to, also arbitrarily chosen, as the body deforms from the state 

indicated at the left to that at the right? 

y 

z 

x 

φ 

Q 

P 
After Deformation 

φ 

Q' 

P' 

to 

Q 

P 

P 

Q 

Before Deformation  

We designate the extensional strain at P in the direction of t0 by ε
PQ

. Our task 

is to see what we need to know in order to evaluate the limit 

εPQ = lim (P'Q' – PQ) ⁄ (PQ)
PQ → 0 

To do this, we draw another picture of the 

t undeformed and deformed differential line ele-
Q' 

ment, PQ. together with the displacements of 

its endpoints. Point P’s displacement to P’ is 

After

y 

φ 
P 

P' Q 

u + ∆u

Lo

L 

Before

to shown as the vector, u, while the displacement of 

point Q, some small distance away, is designated by 

u+∆u. 

This now looks very much like the representa-
u tion used in the last chapter to illustrate and 

construct an expression for the extension of a 

truss member as a function of the horizontal 

x and vertical components of displacement at its 

two ends. That’s why I have introduced the 

vectors L , and L for the directed line segments PQ, P’Q’ respectively though 
o
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they are in fact meant to be small, differential lengths. Proceeding in the same 

way as we did in our study of the truss, we write, as a consequence of vector addi-

tion, 

+ +u L = u + ∆u L0 

which yields an expression for ∆ u in terms of the vector difference of the two directed 
line segments, namely ∆u = L – L0 

We now introduce a most significant constraint, We assume, as we did with the 

truss, that displacements and rotations are small – displacements relative to some 

characteristic length of the solid, rotations relative to a radian. This should not to 

be read as implying our analysis is of limited use. Most structures behave, i.e., 

deform, according to this constraint and, as we have seen in our study of a truss 

structure, it is entirely consistent with our writing the equilibrium equations with 
respect to the undeformed configuration. In fact not to do so would be erroneous. 

Explicitly this means we will take 

t t≈ 0 so that L =	 t • L ≈ t0 • L 

With this we can claim that the change in length of the directed line segment, 

PQ, in moving to P’Q’, is given by the projection of ∆u upon PQ that is, since 

P'Q' – PQ = L – L0 

we have 

–P'Q' – PQ = t0 • L – t 0 • L 0 = t0 • ( L L0) = t0 • ∆ u 

where to is, as before, a unit vector in the direction of PQ. 

t = cos φ ⋅ i + sin φ ⋅ jo 
From here on in, constructing an expression for ε

PQ 
requires the machine-like 

evaluation of the scalar product, t0 *  ∆u, the introduction of the partial derivatives 

of the scalar components of the displacement taken with respect to position, and 

the manipulation of all of this into a form which reveals what’s needed in order to 

compute the relative change in length of the arbitrarily oriented, differential line 

segment, PQ. We work with respect to a rectangular cartesian coordinate frame, 

x,y, and define the horizontal and vertical components of the displacement vector 

u to be u,v respectively2. That is, we set 

( (u = u x, y) ⋅ i + v x, y) j 

where the coordinates x,y label the position of the point P. The differential change in the 
displacement vector in moving from P to Q, a small distance which in the limit will go to 
zero, may then be written 

2.	 In the following be careful to distinguish between the scalar u and the vector u; the former is the x compo-

nent of the latter. 
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( (∆u = ∆u x, y) ⋅ i + ∆v x, y) ⋅ j 

Carrying out the scalar product, we obtain for the change in length of PQ: 

P'Q' – PQ = t0 • ∆ u = (∆u) ⋅ cos φ+ (∆v) ⋅ sin φ 
We next approximate the small changes in the horizontal and vertical, scalar 

components of displacement by the products of their slopes at P taken with the 

appropriate differential lengths along the x and y axes as we move to point Q. That 

∂u ∂u	 ∂v ∂v
is3 ∆u x, y) ≈   ∆x +   ∆y and ∆v x, y) ≈   ∆x +   ∆y(      (    ∂x ∂y	 ∂x ∂y 

We have then 

∂u ∂u ∂v ∂v(P'Q' – PQ) ⁄ (PQ) ≈   ∆x +   ∆y (cos φ ⁄L ) +   ∆x +   ∆y ( sin φ ⁄L )o o          ∂x ∂y ∂x ∂y 

where I have introduced L for the original length PQ. 
o

This is an approximate relationship because the changes in the horizontal and 

vertical components of displacement are only approximately represented by the 

first partial derivatives. In the limit, however, as the distance PQ, and hence as ∆x, 
∆y approaches zero, the approximation may be made as accurate as we like. Note 

also, that the ratios ∆ x/L , ∆ y/L approach cosφ and sinφ respectively. 
o o

We obtain, finally, letting PQ go to zero, the following expression for the 

extensional strain at the point P in the direction PQ: 

∂u	 ∂v
sinεPQ =   cos2 φ+  ∂u ∂v cos φ  φ  +   sin2 φ    ∂y 

+ 
∂x  ∂x	 ∂y 

It appears that in order to compute ε
PQ 

in the direction φ we need to know the 

four first partial derivatives of the scalar components of the displacement at the 

point P. In fact, however, we do not need to know all four partial derivatives since 

it is enough to know the three bracketed terms appearing above Think of comput-

ing ε
PQ 

for different values of φ; knowing the values for the three bracketed terms 

will enable you to do this. 

The relationship above is a very important piece of machinery. It tells us how 

to compute the extensional strain in any direction, defined by φ, at any point, 

defined by x,y, in a body. In what follows, we call the three quantities within the 

brackets  the three scalar components of strain at a point.  But first observe: 

• If we set φ equal to zero in the above, which is equivalent to setting PQ 
out along the x axis, we obtain, as we would expect, that ε

PQ 
= ε , the

x
extensional strain at P in the x direction, i.e.,


∂u
ε =    
x  ∂x 

3.	 It is easy to be confused in the midst of all these partial derivatives. It’s worth taking five minutes to try to sort 
them out. 
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•   Our machinery is thus consistent with our previous definition of ε for 
x

uniaxial loading of a bar fixed at one end and lying along the x axis. 

•	 If, in the same way, we set φequal to a right angle, we obtain 
∂v =εPQ  ∂y 

which can be read as the extensional strain at P in the direction of a line seg­
ment along the y axis. We call this ε . That is 

y 
∂vε =    

y  ∂y 

∂u ∂v 
•	 The meaning of the term ∂y 

+ 
∂x is best extracted from a sketch; below 

we show how the term ∂v can be interpreted as the angle of rotation,∂x 
about the z axis, of a line segment PQ along the x axis. For small rotations 
we can claim ∂v  ∆x ∂xα ∼ tan α = ------------------

∆x 

Similarly, the term δ u/δ y can Q'
be interpreted as the angle of rota-

tion of a line segment along the y 
(δv/δx)∆x

axis, but now, if positive, about α = (δv/δx) ∆u y
the negative z axis. The figure 

x
below shows the meaning of both P ∆x Q (δu/δx)∆x 
terms. 

R' The sum of the two terms is the change in 

y the right angle, PQR at point P. If it is a pos-
R itive quantity, the right angle of the first x

Q' quadrant has decreased. We define this sum 

(δu/δy) to be a shear strain component at point P 
(δv/δx) and label it with the symbol γ . 

P,P' ∆x Q	
xy 

•	 Building on the last figure, we define a rotation at the point P as the aver­
age of the rotations of the two, x,y, line segments. That is we define 

ωxy 1 2⁄( )
x∂ 

∂v 
 
 

y∂ 
∂u 

 
–= 

Note the negative sign to account for the different directions of the two line segment rota­
tions. If, for example, δ v/δ x is positive, and δ u/δ y = - δ v/δ x then there is no shear 
strain, no change in the right angle, but there is a rotation, of magnitude δ v/δ x positive 
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about the z axis at the point P. These three quantities ε ,γ ,ε are the three components of 
strain at a point. 

x xy y 

εx x∂ 
∂u γxy x∂ 

∂v 
 
 

y∂ 
∂u 

 
 εy y∂ 

∂v≡+≡≡ 

If we know the way ε (x,y), γ (x,y), and ε (x,y) vary, we say we know the state 
x xy y

of strain at any point in the body. We can then write our equation for computing 

the extensional strain in any arbitrary direction in terms of these three strain com-

ponents associated with the x,y frame at a point as: 

sinεPQ = ε ⋅ cos φ2 + γ ⋅ cos φ φ  + ε ⋅ sin φ2 
x xy y 

Finally, note that if we are given the displacement components as continuous 

functions x and y we can, by taking the appropriate partial derivatives, compute a 

set of strain functions, also continuous in x,y. On the other hand, going the other 

way, given the three strain components, ε , γ , ε as continuous functions of posi-
x xy y 

tion, we cannot be assured that we can determine unique, continuous functions for 

the two displacement components from an integration of the strain-displacement 

relations. We say that the strains represent a compatible state of deformation only 

if we can do so, that is, only if we can construct a continuous displacement field 
from the strain components. 

Exercise 6.2

 For the planar displacement field defined by 
y 

+1
( (u x, y) = –κ ⋅ xy v x, y) = κ ⋅ x 2 ⁄ 2 

-1 0 

where κ = 0.25, sketch the locus of the edges of a 2x2 +1 

square, centered at the origin, after deformation and 
-1construct expressions for the strain components ε , ε ,

x y


and γ

xy 

We start by evaluating the components of strain; we obtain 
∂u κ ∂vεx ≡ ∂

∂u
x 

= –κy = – x + κx = 0 ε ≡ = 0γxy ≡ 

∂
∂v

x 
+ ∂y y ∂y 

We see that the only non zero strain is the extensional strain in the x direction 

at every point in the plane. In particular, right angles formed by the intersection of 

a line segment in the x direction with another in the y direction remain right angles 

since the shear strain vanishes. The average rotation of these intersecting line seg-

ments at each and every point is found to be 

x 
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ω = (1 2) ∂v 
– ∂y = κxxy ⁄  ∂x 

∂u 

We sketch the locus of selected points and line segments below: 

y y 

+1 

0 

+1 

x x 
-1 -1 

+1 +1 

-1	 -1 

Focus first, on the figure at the left above which shows the deformed position 

of the points that originally lay along the x axis, at y=0. The vertical component of 

displacement v describes a parabola in the deformed state. Furthermore, the points 

along the x axis experience no horizontal displacement. 

On the other hand, the points off the x or the y axis all have a horizontal com-

ponent of displacement - as well as vertical. Consider now the figure above right. 

For example the point (1,1) moves to the left a distance 0.25 while moving up a 

distance 0.125. Below the x axis, however, the point originally at (1,-1) moves to 

the right 0.25 while it still displaces upward the same 0.125. The shaded lines are 

meant to indicate the u at each point. 

Observe 

•	  The state of strain does not vary with x, but does so with y. 

•	  Right angles formed by x-y line segments remain right angles, that is the 
shear strain is zero. 

•   The average rotations of these right angles does vary with x but not with 
y. Note too that we have seemingly violated the assumption of small rota­
tions. We did so in order to better illustrate the deformed pattern. 

6.2 Transformation of Components of Strain 

The axial stress in a truss member is related to the extensional strain in the mem-

ber through an equation that looks very much like that which relates the force in a 

spring to its deflection. We shall relate all stress and strain components through 

some more general constitutive relations — equations which bring the specific 

properties of the material into the picture. But stress and strain are “relations” in 

another sense, in a more abstract, mathematical way: They are both the same kind 
of mathematical entity. The criterion and basis for this claim is the following: 

The components of stress and strain at a point transform according to the 
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same equations. By transform we mean change; by change we mean change due 

to a rotation of our reference axis at the point. 

Our study of how the components of strain and stress transform is motivated as 

much by the usefulness of this knowledge in engineering practice as by visions of 

mathematical elegance and sophistication4. For, although this section could have 

been labeled the transformation of symmetric, second-order tensors, we have  

already seen an example, back in our study of stress, an example suggesting the 

potential utility of the component transformation machinery. We do an exercise 

very similar to that we tackled before to refresh our memory. 

Exercise 6.3 

Three strain gages, attached to the surface of a solid shaft in torsion in the 
directions x, y, and x’ measure the three extensional strains

˙ε	 = 0 εy = 0 and εx' = 0.00032x 

 Estimate the shear strain γxy. 

45

x

x’	y 
Mt

Let’s work backwards. No one 

says you have to work forward 

from the “givens” straight through 

to the answer5. 

We are given the values of three extensional strains measured at a point on the 

surface of the shaft6. The task is to determine the shear strain at the point from 

the three, measured extensional strains. 

From the previous section we know that the extensional strain in the x’ direc-

tion - thinking of that direction as "PQ" - can be expressed as 

εPQ = ε ⋅ cos φ2 + γ ⋅ cos φsin φ + εy ⋅ sin φ2 
,x xy 

which tells me how to compute the extensional strain in some arbitrarily oriented direction 
at a point, as defined by the angle φ, given the state of strain at the point as defined by the 
three components of strain with respect to an x,y axis. 

Working backwards, I will use this to compute the shear strain γxy given knowl-

edge of the extensional strain εPQ where PQ is read as the direction of the gage x’ 

4.	 Katie: See Reid...I told you so! 

5.	 This is characteristic of most work, not only in engineering but in science as well. The desired end state – the 
answer to the problem, the basic form of a design, the theorem to be proven, the character of the data to be 
collected – is usually known at the outset. There are really very few surprises in science or engineering in this 
respect. What is surprising, and exciting, and rewarding is that you can manage to construct things to come 
out right and they work according to your expectations. 

6.	 It’s not really a point but a region about the size of a small coin. 
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oriented at 45
o 

to the axis of the shaft and pasted to its surface. Now both εx and 

ε  are zero7 so this equation gives 

⁄ 
y

0.000032 = γ ⋅ (1 2) or  γxy = 0.00064xy 

Observe: 

•  If the strains ε and ε  were different from zero we would still use this 
x y

relationship to obtain an estimate of the shear strain. The former would 
provide us with direct estimates of any axial or hoop strain. 

•	  I can graphically interpret this equation for determining the shear strain 
by constructing a compatible (continuous) displacement field from the 
strain components εx, εy, and γxy. Note this is not the only displacement 
field I might generate that is consistent with these strain components but it 
will serve to illustrate the relationship. 

∆x0 
x 

y 

45 
45 

b 

t 
t = (1/√ 2) i + (1/√ 2) j 

∆v(√

c 

∆v 

∆v 

a 

∆v 

 2/2)=change in length of ob 

With the shaft oriented horizontally and twisted as shown, I take the displace-

ment component, u(x,y) to be zero and v(x,y) to be proportional to x but indepen-

dent of y. Then the points a and b both displace vertically a distance ∆v with 

respect to points 0 and c. The extension of the diagonal 0b is, for small displace-

ments and rotations, the projection of ∆v at b upon the diagonal itself. So the 

change in length is given by ∆v ⁄ ( 2) . Its original length is 2 ⋅ ∆x so we can 

(∆v ⁄ ∆x)
write εx' = εob = ----------------------

2 
But, again for small rotations, ∆v/∆x = γxy the decrease in the right angle, the 

shear strain. Thus, as before, 

εx' = γxy ⋅ (1 2)⁄ 

7.	  More realistic values would be some small, insignificant numbers due to noise or slight imbalance in the 
apparatus used to measure, condition, and amplify the signal produced by the strain gage. Even so, if the 
shaft was subject to forms of loading other than, and in addition to the torque we seek to estimate, and these 
engendered significant strains in the a and c directions we would still make use of this relationship in estimat-
ing the shear strain. 
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This exercise illustrates an application of the 

rules governing the transformation of the compo- y' y 
nents of strain at a point. That’s now the way we 

read the equation we in the previous section – as a 

way to obtain the extensional strain along one 

axis of an arbitrarily oriented coordinate frame at 

a point in terms of the strain components known 

with respect to some reference coordinate frame. 

x'
For example, if I let the arbitrarily oriented frame be φ 
labeled x’-y’, then the extensional strain components 
relative to this new axis system can be written in terms of the strain components associated 
with the original, x-y frame as 

ε' = ε ⋅ cos φ2 + γ ⋅ cos φsin φ + ε ⋅ sin φ2 
x x xy y 

ε' = ε ⋅ cos φ2 – γ ⋅ cos φsin φ + ε ⋅ sin φ2 
y x xy y 

In obtaining the expression for the extensional strain in the y’ direction, I substituted φ+ π/ 
2 for φ in the first equation. 

But there is more to the story. I must construct an equation that allows me to 

compute the shear strain, γ'xy relative to the arbitrarily oriented frame, x’y’. To 

do so I make use of the same graphical methods of the previous section. 

The figure below left shows the orientation of my reference x-y axis and the 

orientation of an arbitrarily oriented frame x’-y’. PQ is a differential line element 

in the undeformed state lying along the x’ axis. t is a unit vector along PQ; e is a 

unit vector perpendicular to PQ in the sense shown. ∆x, ∆y are the horizontal and 

vertical coordinates of Q relative to the origin of the reference frame. 

y
y' y' y

R


α

β 

Q' 

x 

φ 
∆y
Q x’

R∆uR 

R’ 

j' = - sinφ i + cosφ j 

φ Q 
x'

∆y x ∆uQP 
∆xj P,P' 

∆x 
i Before  After 

On the right we show the position of PQ in the deformed state as P'Q'. The dis-

placement of point Q relative to P is shown as ∆ uQ. The angle α is the (small) 

rotation of the line element PQ. This is what we seek to express in terms of the 

strain components ε , ε and γ at the point. We will also determine the rotation 
x y xy 

of a line element along the y’ axis. Knowing these we can compute the change in 

x 
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the right angle QPR , the shear strain component with respect to the x’-y’ system 

which we will mark with a “prime”, γ ’. 
xy 

The angle α is given approximately by α = ∆u j' ⁄ (PQ) where j’ is per-• 
pendicular to PQ. 

The displacement vector we write as ∆u = ∆u ⋅ i + ∆v ⋅ j which, to first order 

may be written in terms of the partial derivatives of the scalar components of the 

relative displacement of Q. 

∂v∆u =  ∆x 
∂u 

+ ∆y 
∂u i +  ∆x 

∂v 
+ ∆y∂y j ∂x ∂y  ∂x 

and the unit vector is j' = – sin φ ⋅ i+ cos φ ⋅ j 

Carrying out the scalar, dot product, noting that 

⁄ ⁄∆y PQ  = cos φ and ∆y PQ  = sin φ 

we obtain 

∂u ∂v ∂vα ≈ – sin φ
 cos φ∂u 

+ sin φ∂y + cos φ cos φ + sin φ∂x  ∂x ∂y 

Or collecting terms 

∂v ∂uα ≈ sin φcos φ ∂v – ∂u + cos2 φ – sin2 φ ∂y ∂x ∂x ∂y 

I obtain the angle β the rotation of a line segment PR originally oriented along 

the y’ axis most simply by letting φ go to φ +π/2 in the above equation for the 

angle α . Thus 

∂v ∂uβ ≈ – sin φcos φ ∂v – ∂u + sin2 φ – cos2 φ ∂y ∂x ∂x ∂y 

the diminution in the right angle QPR is just α - β so I obtain: 

∂uγ' ≈ 2 sin φcos φ

∂
∂ 
v
y 

– ∂
∂ 
u
x 

 + (cos2 φ– sin2 φ) ∂v 

– xy  ∂x ∂y 

which, in terms of the strain components associated with the x,y axes becomes 
2γ' = 2(εy – ε ) ⋅ sin φcos φ+ γxy ⋅ (cos φ2 – sin φ )xy x 

With this I have all the machinery I need to compute the components of strain 

with respect to one orientation of axes at a point given their values with respect to 

another. I summarize below, making use of the double angle identities for the cosφ 
and the sinφ, namely, cos 2φ =cos2φ - sin2φ and sin2φ =2sinφcosφ. 
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ε' x 

εx εy+( ) 
2 

-
εx εy –( ) 

2 
- 2φcos⋅ γxy 2⁄( ) 2φsin+ += 

ε' y 

εx εy+( ) 
2 

-
εx εy –( ) 

2 
- 2φcos⋅– γxy 2⁄( )– 2φsin= 

γ' xy 2⁄( ) 
εx εy –( ) 

2 
-– 2φsin⋅ γxy 2⁄( ) 2φcos+= 

I have introduced a common factor of (1/2) in the equation for the shear strain 

for the following reasons: If you compare these transformation relationships with 

those we derived for the components of stress, back in chapter 4, you will see they 

are identical in form if we identify the normal strain components with their corre-

sponding normal stress components but we must identify τxy with γxy/2. 

One additional relationship about deformation follows from our analysis: If I 

average the angular rotations of the two orthogonal line segments PQ and PR, I  

obtain an expression for what we define as the rotation of the x’-y’ axes at the 

point. This produces 

1 1 
--- + ---ω' =   (α β) =    ∂v – ∂u = ωxyxy       ∂x ∂y2 2 

This, we note, is identical to ω which is what justifies labeling this measure 
xy 

of deformation a rigid body rotation. It is also invariant of the transformation; 

regardless of the orientation of the coordinate frame at the point, you will always 

get the same number for this measure of rotation. 

Exercise 6.4 

A “bug” in my graphics software distorts the image appearing on my moni-
tor. Horizontal lines are stretched 1%; vertical lines are compressed 5% 
and there is a distortion of the right angles formed by the intersection of 

horizontal and vertical lines of approximately 3o – a decrease in right 
angle in the first quadrant. Estimate the maximum extensional distortion I 
can anticipate for an arbitrarily oriented line drawn by my software. What 
is the orientation of this particular line relative to the horizontal? 

I seek a maximum value for the extensional strain at a point — the extensional 

strain of an arbitrarily oriented line segment which is maximum. Any point on the 

screen will serve; we are working with a homogeneous state of strain, one which 

does not vary with position. I also of course want to know the direction of this line 

segment. The equation above for ε ’ shows the extensional strain as a function of 
x 
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φ; we differentiate with respect to φ seeking the value for the angle which will 

give a maximum (or minimum) extensional strain. I have: 

dε' x =	 –(εy – ε )sin 2φ γxy ⋅ cos 2φ = 0+xdφ 

which I manipulate to 

tan 2φ = γ ⁄ (εy – ε )xy x 

Now the three x,y components of strain are ε =0.01, ε = -0.05, and γ = 3/
x y xy 

57.3 = 0.052. The above relationship, because of the behavior of the tangent func-

tion, will give me two roots within the range 0 < φ < 360
o
, hence two values of φ. 

I obtain two possibilities for the angle of orientation of maximum (or mini-

mum) extensional strain, φ = 20.6
o and φ = 20.6 + 90

o
= 110.6

o 
One of these will 

correspond to a maximum extensional strain, the other to a minimum. Note that 

we can read the second root as an extensional strain in a direction perpendicular to 

that associated with the first root. In other words, if we evaluate both ε ’ and 
x 

ε ’for a rotation of φ = 20.6
o 

we will find one a maximum the other a minimum. 
y 

This we do now. 

Taking then, φ= 20.6
o
 I obtain for the extensional strain in that direction, 

ε	  = 0.0197
I

about two percent extension. The extensional strain at right angles to this I obtain from the 
equation for ε ’, a strain along an axis 110.6o around from the horizontal, ε

II
 = - 0.0597,

y

about six percent contraction. This latter is the maximum 
yextensional distortion, a contraction of 5.97%. We illus- II 

trate the situation below. 

Observe 

20.6o 

I 
sional strain at a point, one a maximum, the 

•	  We call this pair of extreme values of exten­

x 
other a minimum, the principal strains; the 
axes they are associated with are called the 
principal axes. 

•	  The shear strain associated with the principal axes is zero, always. 
This follows from comparing the equation we derived by setting the deriv­
ative of the arbitrarily oriented extensional strain with respect to angle of 
rotation, namely

 tan(2φ) = γ /(ε 
x
 - ε )

xy y

with the equation for the transformed component γ ’. If the former is satis­
fied then the shearmust vanish.	 xy 
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6.3 Mohr’s Circle 

Our working up of the transformation relations for stress and for strain and our 

exploration of their meaning in terms of extreme values has required considerable 

mathematical manipulation. We turn again to our graphical rendering of these 

relationships called Mohr’s Circle. I have set out the rules for constructing the cir-

cle for a particular state of stress. What I seek now is to show the “sameness” of 

the transformation relations for strain components. 

First, I repeat the transformation equations for a two-dimensional state of 

stress. 

σ' x 

σx σy+( ) 
2 

-
σx σy –( ) 

2 
- 2φcos⋅ σxy 2φsin+ += 

σ' y 

σx σy+( ) 
2 

-
σx σy –( ) 

2 
- 2φcos⋅– σxy – 2φsin= 

σ' xy 

σx σy –( ) 
2 

-– 2φsin⋅ σxy 2φcos+= 

and now the transformation equations for a two-dimensional state of strain:


ε' x 

εx εy+( ) 
2 

-
εx εy –( ) 

2 
- 2φcos⋅ γxy 2⁄( ) 2φsin+ += 

ε' y 

εx εy+( ) 
2 

-
εx εy –( ) 

2 
- 2φcos⋅– γxy 2⁄( )– 2φsin= 

γ' xy 2⁄( ) 
εx εy –( ) 

2 
-– 2φsin⋅ γxy 2⁄( ) 2φcos+= 

Comparing the two sets, we see they are the same if we compare half the 
shear strain with the corresponding shear stress. This means we can use the 

same Mohr’s Circle as for stress when doing strain transformation problems. All 

we need do is think of the vertical axis as being a measure of γ/2. 
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6.4 Problems 

6.1 Show that for the thin circular hoop subject to 

an axi-symmetric, radial extension ur, that the 

circumferential extensional strain, can be expressed as 

εθ = (L - Lo)/Lo = ur/ro 

where Lo is the original, undeformed circumference. 

ro 

ur 

6.2  Three strain gages are mounted in the 

directions shown on the surface of a thin plate. 
εc  = 1.0e-05 The values of the extensional strain each measures 

y εb  = 0 is also shown in the figure. 

i) Determine the shear strain component γxy at the 

x point with respect to the xy axes shown. 

0 εa = 1.0e-05
ii) What orientation of axes gives extreme values 

for the extensional strain components at the point. 

iii) What are these values. 

60o 

6.3 Three strain gages measure the extensional strain b

in the three directions 0a, 0b and 0c at “the point 0”.

Using the relationship we derived in class a
 c 

εPQ = ε cos2 φ+ γ cos φsin φ + ε sin2 φx xy y 
y

45 45 

find the components of strain with respect to the xy axis in 
terms of εa, εb and εc 0 x 

6.4  A strain gage rosette, fixed to a flat, thin 
εc εb plate, measures the following extensional 

strains 
120o 

εa  = 1. E-04 
60o εa εb  = 1. E-04 

εc  = 2. E-04 
y 

Determine the state of strain at the point,x 
expressed in terms of components relative to 

the xy coordinate frame shown. 
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6.5 A two dimensional displacement field is defined by 

( –α ( α 
u x, y) = ------- ⋅ y and v x, y) = --- ⋅ x

2 2 

Sketch the position of the 
ypoints originally lying along 

the x axis, the line y = 0, due to 
this displacement field. 
Assume α is very much less 
than 1.0. 

x 
Likewise, on the same sketch, 
show the position of the points 
originally lying along the y 
axis, the line x = 0, due to this 
displacement field. 

Likewise, on the same sketch, show the position of the points originally lying along the 
line y=x, due to this displacement field. 

Calculate the state of strain at the origin; at the point, x,y. 

( α( αRespond again but now with u x, y) = --- ⋅ y and v x, y) = --- ⋅ x
2 2 




