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Indeterminate Systems

The key to resolving our predicament, when faced with a statically indeterminate 

problem - one in which the equations of static equilibrium do not suffice to deter-

mine a unique solution - lies in opening up our field of view to consider the dis-
placements of points in the structure and the deformation of its members. This 

introduces new variables, a new genera of flora and fauna, into our landscape; for 

the truss structure the species of node displacements and the related species of 

uniaxial member strains must be engaged. For the frame structure made up of 

beam elements, we must consider the slope of the displacement and the related 

curvature of the beam at any point along its length. For the shaft in torsion we 

must consider the rotation of one cross section relative to another. 

Displacements you already know about from your basic course in physics – 

from the section on Kinematics within the chapter on Newtonian Mechanics. Dis-

placement is a vector quantity, like force, like velocity; it has a magnitude and 

direction. In Kinematics, it tracks the movement of a physical point from some 

location at time t to its location at a subsequent time, say t +δt, where the term δt 
indicates a small time increment. Here, in this text, the displacement vector will, 

most often, represent the movement of a physical point of a structure from its 
position in the undeformed state of the structure to its position in its deformed 
state, from the structure’s unloaded configuration to its configuration under load. 

These displacements will generally be small relative to some nominal length of 

the structure. Note that previously, in applying the laws of static equilibrium, we 

made the tacit assumption that displacements were so small we effectively took 

them as zero; that is, we applied the laws of equilibrium to the undeformed body.1 

There is nothing inconsistent in what we did there with the tack we take now as 

long as we restrict our attention to small displacements. That is, our equilibrium 

equations taken with respect to the undeformed configuration remain valid even as 

we admit that the structure deforms. 

Although small in this respect, the small displacement of one point relative to 
the small displacement of another point in the deformation of a structural member 

can engender large internal forces and stresses. 

In a first part of this chapter, we do a series of exercises - some simple, others 

more complex - but all involving only one or two degrees of freedom; that is, they 

all concern systems whose deformed configuration is defined by but one or two 

displacements (and/or rotations). In the final part of this chapter, we consider 

1.	 The one exception is the introductory exercise where we allowed the two bar linkage to “snap through”; in 
that case we wrote equilibrium with respect to the deformed configuration. 
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indeterminate truss structures - systems which may have many degrees of free-

dom. In subsequent chapters we go on to resolve the indeterminacy in our study of 

the shear stresses within a shaft in torsion and in our study of the normal and shear 

stresses within a beam in bending. 

5.1 Resolving indeterminacy: Some Simple 
Systems. 

If we admit displacement variables into our field of view, then we must necessar-

ily learn how these are related to the forces which produce or are engendered by 

them. We must know how force relates to displacement. Force-displacement, or 

constitutive relations, are one of three sets of relations upon which the analysis of 

indeterminate systems is built. The requirements of force and moment equilibrium 
make up a second set; compatibility of deformation is the third. 

L 

A Word about Constitutive Relations 

You are familiar with one such constitutive relationship, namely that 

between the force and displacement of a spring, usually a linear spring. 

F = k δ ⋅ says that the force F varies linearly with the displacement δ . 
The spring constant (of proportionality) k has the dimensions of force/ 

length. It’s particular units might be pounds/inch, or Newtons/millimeter, 

or kilo-newtons/meter. 

Your vision of a spring is probably that of a coil spring - like the kind you 

might encounter in a children’s playground, supporting a small horse. Or 

you might picture the heavier springs that might have been part of the 

undercarriage of your grandfather’s automobile. These are real-world 

examples of linear springs. 

But there are other kinds that don’t look like coils at all. A rubber band 

behaves like a spring; it, however, does not behave linearly once you 

stretch it an appreciable amount. Likewise an aluminum or steel rod when 

stretched behaves like a spring and in this case behaves linearly over a 

useful range - but you won’t see the extension unless you have super-

human eyesight. 

For example, the picture at the left is meant to represent a rod, made of an 

aluminum alloy, drawn to full scale. It’s length is L = 4 inches , its cross-

A sectional area A = 0.01 square inches . If we apply a force, F, to the free 

end as shown, the rod will stretch, the end will move downward just as a 

coil spring would. And, for small deflections, δ , if we took measurements 

δ in the lab, plotted force versus displacement, then measured the slope of 

what appears to be a straight line, we would have: 

F 
F = k δ ⋅ where k = 25,000 lb/inch 
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This says that if we apply a force of 25,000 pounds, we will see an end dis-

placement of 1.0 inch. You, however, will find that you can not do so. 

The reason is that if you tried to apply a weight of this magnitude (more than 

10 tons!) the rod would stretch more and more like a soft plastic. It would yield 
and fail. So there are limits to the loads we can apply to materials. That limit is a 

characteristic (and conventional) property of the material. For this particular alu-

minum alloy, the rod would fail at an axial stress of 

σyield = 60,000 psi or at a force level F = 600 pounds factoring in the 

area of 0.01 square inches. 

Note that at this load level, the end displacement, figured from the experimen-

tally established stiffness relation, is δ = 0.024 inches (can you see that?) And 

thus the ratio δ/L is but 0.006. This is what we mean by small displacements. This 

is what we mean by linear behavior (only up to a point - in this case -the yield 

stress). This is the domain within which engineers design their structures (for the 

most part). 

We take this as the way force is related to the displacement of individual struc-

tural elements in the exercises that follow2. 

Exercise 5.1 

A massive stone block of weight W and uni-
form in cross section over its length L is sup-
ported at its ends and at its midpoint by 
three linear springs. Assuming the block a 

W 

rigid body3, construct expressions for the 
wo = W/L 

forces acting in the springs in terms of the 
weight of the block. 

The figure shows the block resting on three FA FB  FC
linear springs. The weight per unit length we L/2 L/2 
designate by wo = W/L. 

In the same figure, we show a free-body diagram. The forces in the spring, 

taken as compressive, push up on the beam in reaction to the distributed load. 

Force equilibrium in the vertical direction gives: 

2.	 We will have more to say about constitutive relations of a more general kind in a subsequent chapter. 

3.	 The word rigid comes to the fore now that we consider the deformations and displacements of extended bod-
ies. Rigid means that there is no, absolutely no relative displacement of any two, arbitrarily chosen points in 
the body when the body is loaded. Of course, this is all relative in another sense. There is always some rela-
tive displacement of points in each, every and all bodies; a rigid body is as much an abstraction as a friction-
less pin. But in many problems, the relative displacements of points of some one body or subsystem may be 
assumed small relative to the relative displacements of another body. In this exercise we are claiming that the 
block of stone is rigid, the springs are not, i.e., they deform. 
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F A + FB + FC – W = 0 

While moment equilibrium, summing moments about the left end, A, taking 

counter-clockwise as positive, gives: 

⋅M = FB ⋅ L ⁄ 2 + FC ⋅ L – W L  ⁄ 2 = 0∑

A 

The problem is indeterminate: Given the length L and the weight W, we have 

but two equations for the three unknown forces, the three compressive forces in 

the springs. 

Now, indeterminacy does not mean we can not find a solution. What it does 
mean is that we can not find a single, unambiguous, unique solution for each of 

the three forces. That is what indeterminate means. We can find solutions - too 
many solutions; the problem is that we do not have sufficient information, e.g., 

enough equations, to fix which of the many solutions that satisfy equilibrium is 

the right one4. 

Indeterminate solution (to equilibrium alone) #1 
For example, we might take FB = 0 , which in effect says we remove the 

spring support at the middle. Then for equilibrium we must subsequently have

F A = FC = W ⁄ 2 This is a solution to equilibrium. 

Indeterminate solution (to equilibrium alone) #2 
Alternatively, we might require that F A = FC ; in effect adding a third equa-

tion to our system. With this we find from moment equilibrium that 

F A = FC = W ⁄ 3 and so from force equilibrium FB = W ⁄ 3 This too is a 

solution. 

Indeterminate solution (to equilibrium alone) #n, n=1,2,...... 
We can fabricate many different solutions in this way, an infinite number. For 

example, we might arbitrarily take FB = W n , where n = 1,2,....then from ⁄ 
the two requirements for equilibrium find the other two spring forces. (Try it)! 

Notice in the above that we have not said one word about the displacements of 

the rigid block nor a word about the springs, their stiffness, whether they are lin-

ear springs or non-linear springs. Now we do so. Now we really solve the indeter-

minate problem, setting three or four different scenarios, each defined by a 

different choice for the relative stiffness of the springs. In all cases, we will 

assume the springs are linear. 

4. We say the equations of equilibrium are necessary but not sufficient to produce a solution. 
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Full Indeterminate solution, Scenario #1 
In this first scenario, at the start, we assume also that they have equal stiff-

ness. 

We set 

F A = k ⋅ δA 

FB = k ⋅ δB where δA, δB , and δC are the displacements of the springs, 

FC = k ⋅ δC 

taken positive downward since the spring forces were taken positive in compres-

sion5. The spring constants are all equal. These are the required constitutive rela-
tions. 

Now compatibility of deformation: The question is, how are the three displace-

ments related. Clearly they must be related; we can not choose them indepen-

dently one from another, e.g., taking the displacements of the end springs as 

downward and the displacement of the midpoint as upwards. This could only be 

the case if the block had fractured into pieces. No, this can’t be. We insist on com-

patibility of deformation. 

Here we confront the same situation faced by Buridan’s ass, that is, the situa-

tion to the left appears no different from the situation to the right so, “from sym-

metry” we claim there is no sufficient reason why the block should tip to the left 

or to the right. It must remain level6. 

In this case, the displacements are all equal. 

δA = δB = δC 

This is our compatibility equation. 

So, in this case, from the constitutive relations, the spring forces are all equal. 

So, in this case, 

F A = FB = FC = W ⁄ 3 

Full Indeterminate solution, Scenario #2 
In this second scenario, we assume the two springs at the end have the same 

stiffness, k, while the stiffness of the spring at mid-span is different. We set kB=αk 
so our constitutive relations may be written 

F A = k ⋅ δA 

FB = αk ⋅ δB where the non-dimensional parameter α can take on any posi-

FC = k ⋅ δC 

tive value within the range 0 to very, very large. 

5.	 We must be careful here; a positive force must correspond to a positive displacement. 

6.	 Note that this would not be the case if the spring constants were chosen so as to destroy the symmetry, e.g., if 

kA > kB > kC . 
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Notice again we have symmetry: There is still no reason why the block should 

tip to the left or to the right! So again, the three displacements must be equal. 

δA = δB = δC = δ 
The constitutive relations then say that the forces in the two springs at the end 

are equal, say = F and that the force in the spring at mid span is αF. 

With this, force equilibrium gives 

F A + FB + FC = W i.e., (2 + α) ⋅ ⋅ δ = Wk 

So, in this scenario, 

W	 α ⋅ W
F A = FC = ------------------ and FB = ------------------

(2 + α)	 (2 + α) 

• Note that if we set α=0, in effect removing the middle support, we obtain 
what we obtained before - indeterminate solution (to equilibrium) #1. 

•	 Note that if we set α=1.0, so that all three springs have the same stiffness, 
we obtain what we obtained before - full indeterminate solution, Sce-
nario #1. 

•	  Note that if we let α be a very, very large number, then the forces in the 
springs at the ends become very, very small relative to the force in the 
spring at mid-span. In effect we have removed them. (We leave the stabil­
ity of this situation to a later chapter). 

Full Indeterminate solution, Scenario #3 
We can play around with the relative values of the stiffness of the three springs 

all day if we so choose. While not wanting to spend all day in this way, we should 

at least consider one scenario in which we loose the symmetry, in which case the 

springs experience different deformations. 

Let us take the stiffness of the spring at the left end equal to the stiffness of the 

spring at midspan, but now set the stiffness of the spring at the right equal to but a 

fraction of the former; 

F A = k ⋅ δA 

That is we take FB = k ⋅ δB


FC = αk ⋅ δC


Clearly we have lost our symmetry. We need to reconsider compatibility of 

deformation, considering how the displacements of the three springs must be 

related. 
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The figure at the right is not a free body dia-

gram. It is a new diagram, simpler in many 

respects than a free body diagram. It is a picture 

of the displaced structure, rather a picture of how 

it might possibly displace. 

“Possibilities” are limited by our requirement 

W

before
L/2 L/2 

that the block remain all in one piece and rigid. δδA B δC 

This means that the points representing the loca- after
tions of the ends of the springs, at their junctions 

with the block, in the displaced state must all lie 
on a straight line. 

The figure shows the before and after loading states of the system. 

There is now a rotation of the block as well as a vertical displacement7. Now,  

we know that it takes only two points to define a straight line. So say we pick δA 

and δB and pass a line through the two points. Then, if we extend the line to the 

length of the block, the intersection of a vertical line drawn through the end at C 
in the undeflected state and this extended line will define the displacement δC. 

In fact, from the geometry of this displaced state, chanting “...similar trian-

gles...”, we can claim 

(δ – δA) (δ – δA) 1B C 
---------------------- = ---------------------- or δB = --- ⋅ (δ + δA)

2 C(L ⁄ 2) L 

This second equation shows that the midspan displacement is the mean of the two end dis­
placements. 

This is our compatibility condition. It holds irrespective of our choice of spring 
stiffness. It is an  independent requirement, independent of equilibrium as well. It 

is a consequence of our assumption that the block is rigid. 

Now, with our assumed constitutive relations, we find that the forces in the 

springs may be written in terms of the displacements as follows. 

F A = k ⋅ δA


1

FB = k ⋅ ⋅ (δ + δA) where we have eliminated δB from our story.

2 C


FC = αk ⋅ δC


Equilibrium, expressed in terms of the two displacements, δA and δC. gives: 

1 (δ + δA) 
2kδA + --- ⋅ (δ + δA) + αδ = W k and ----------------------- + αδC = W ⁄ ( )

2 C C ⁄ C 

4 

7. We say the system now has two degrees of freedom. 
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The solution to these is: 

2W α W (1 + α)	 2W 1δA = -------- ⋅ --------------------- δB = ----- ⋅ --------------------- and δC = -------- ⋅ ---------------------
k (1 5α) k (1 5α)	 k (1 5α)+ +	 + 

•	  Note that if we take α =1.0, we again recover the symmetric solu-
tion δA = δB = δC and F A = FB = FC = W ⁄ 3 

•	  Note that if we take α=0 we obtain the interesting result
δA = 0 δB = W k δC = 2 ⋅ W k  which means that the block⁄	 ⁄ 
pivots about the left end. And the midspan spring carries all of the weight 
of the block! F A = = 0 FB = WFC 

•	  And if we let α get very, very large...(see the problem at the end of the 
chapter. 

Full Indeterminate solution, Scenario #4 
As a final variation on this problem, we relinquish our claim that the block is 

rigid. Say it is not made of stone, but of some more flexible, structural material 

such as aluminum, or steel, or wood, or even glass. We still assume that the weight 

is uniformly distributed over its length. 

We will, however, assume the spring stiffness are of a special form in order to 

obtain a relatively simple problem formulation and resolution. We take the end 

springs as infinitely stiff, as rigid. They deflect not at all. In effect we support the 

block at its ends by pins. The stiffness of the spring at midspan we take as k. 

Our picture of the geometry of deformation 

must be redrawn to allow for the relative dis-

placement of points, any two points, in the 

block. 

We again, assuming the block is uniform 

along its length, can claim symmetry. We 

sketch the deflected shape accordingly. 

Equilibrium remains as before. But now we 

must be concerned with the constitutive relations for the beam! 

Forget the spring for a moment. Picture the 

L/2 L/2 

W 

δ 

W 

∆W 

∆P 

P 

(a) 

beam as subjected to two different loadings: 

The first, a uniformly distributed load, figure 

(a); the second, a concentrated load P at mid-

span, as shown in figure (b), due to the pres-

ence of the spring. 

Let the deflection at midspan due to first load-

ing condition, W, uniformly distributed load, 

be designated by ∆W. Take it from me that we 

can write 

W kW ⋅ ∆W = 
L/2L/2 

(b) 
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that is, the deflection grows linearly with the weight8. Here kW is the stiffness, relating the 
midspan deflection to the total weight of the block. 

Let the deflection at midspan due to the second loading condition, the concen-

trated load, P, be designated by ∆P. Take it from me that we can write P kP ⋅ ∆P = 

where we will, in time, identify P as the force due to the compression of the 

spring. 

Now, for compatibility of deformation, the actual deflection at midspan will be 

the difference of these two deflections: If we take downward as positive we have 

δ = ∆W – ∆P 

where δ is the net downward displacement at midspan and hence, the actual compressive 
displacement of the spring. Putting this in terms of the spring force and the weight W, and 
the force P, we have:

B ⁄ ⁄	 B ⁄⁄ k = W kW – P kP But P is just FB. So we have ⁄ k = W kW – FB ⁄ kP 

We solve this now for the force in the spring in terms of the total weight, W, which we take 
as given and obtain 

kP ⋅ k W
FB = ------------ ⋅ -------------------

kW (k kP)+ 
This simplifies if you accept the fact that the ratio of the stiffness, kp/kW , is known. Take it 
from me that this ratio is 5/8. 

With this we can write FB = 5 8⁄( ) W 
1 kP k⁄+( ) 

-⋅ 

1 3 8⁄ kP k⁄+( )
Then from force equilibrium we obtain: F A FC ⋅ ⋅ W= = --- ---------------------------------

2 (1 + kP ⁄ k) 

•	 Note that if we let the stiffness, k, of the spring get very, very large, we get
F A = FC = (3 ⁄ 16) ⋅ W while FB = (5 8) ⋅ W In effect,⁄ 
we have replaced the midspan spring with a rigid, pin support and these 

are the reaction forces at the supports. 

wo = W/L 

FC 

FB=(5/8)W 

FA = FA=(3/16)W 

8. We study, and construct expressions for, the displacement distribution of beams due to various loading condi-
tions in a later chapter. 



138 Chapter 5 
•	  Note how, knowing the reaction forces, we could go on and draw the 
shear-force and bending moment diagram. 

That’s enough variations on single problem. We turn now to a second exercise, 

an indeterminate problem again, to see the power of our three principles of analy-

sis. 

Exercise 5.2 

A rigid carton, carrying fragile contents (of negligible weight), rests on a 
block of foam and is restrained by four elastic cords which hold it fast to a 
truck-bed during transit. Each cord has a spring stiffness k

cord 
= 25 lb/in.; 

the foam has eight times the spring stiffness, k
foam

= 400 lb/in. 

The gap ∆, in the undeformed 
state, i.e., when the cords


hang free, is 1.0 in.9 Show

that when the carton is held

down by the four cords that

each of the cords experiences

a tensile force of 20 lb.


Carton 

Ff 
Fc 

foam 

hc 

hf ∆ 

Fc 
We begin by making a cut 

through the body to get at the internal forces in the cords and in the foam. We 

imagine the cords hooked to the floor; the system in the deformed state. We cut 

through the foam and the cords at some quite arbitrary distance up from the floor. 

Our isolation is shown at the right. 

Force equilibrium gives, noting there are four cords to take into account: 

F f 4Fc – 0= 

Here we model the system as capable of motion in the vertical direction only. 

The internal reactive force in the foam is taken as uniformly distributed across the 

cut. F is the resultant of this distribution. Consistent with this, the foam, like the 
f 

cords, is taken as a uniaxial truss member, like a linear spring. 

Observe that the foam will compress, the cords will extend. Note that I 

seemingly violate my convention for assumed direction of positive truss member 

forces in that I take a compressive force in the foam as positive. I could argue that 

this is not a truss; but, no, the real reason for proceeding in this way is to make 

full use of our physical insight in illustrating the new requirement of compatibility 

of deformation. We can be quite confident that the foam will compress and the 

9.	  It is not necessary to state that we neglect the weight of the carton if we work from the deformed state with 
the foam deflected some due to the weight alone. This is ok as long as the relationship between force and 
deflection is linear which we assume to be the case. 
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cords extend. In other instances to come, the sign of the internal forces will not be 

so clear. Careful attention must then be given to the convention we adopt for the 

positive directions of displacements, as well as forces. Note also that there exists 

no externally applied forces yet internal forces exist and must satisfy equilibrium. 

We call this kind of system of internal forces self-equilibrating. 

We see we have but one equation of equilibrium, yet two unknowns, the 

internal forces F and F
f
. The problem is statically, or equilibrium indeterminate. 

c 

We now call upon the new requirement of Compatibility of deformation to gen-

erate another required relationship. In this we designate the compression of the 

foam δ ; its units will be inches. We designate the extension of the cords δ ; it too  
f c

will be measured in inches. 

hc 

hf 

Lo 
hc Lf 

∆  (hf - δf) 

Before After 
Compatibility of deformation is a statement relating these two measures. In 

fact their sum must be, ∆, the original gap. We construct this statement as follows: 

The original length of the cord is

Lo = h f + hc – ∆ while its final length is L f = h f( δ f – ) hc+ 

The extension of the cord is the difference of these: δc = L f – LO = – δ f + ∆ 

Compatibility of Deformation then requires 

δc δ f+ ∆= 

Only if this is true will our structure remain all together now as it was before fastening 
down. 

Here is a second equation but look, we have introduced two more unknowns, 

the compression of the foam and the extension of the cords. It looks like we are 

making matters worse! Something more must be added, namely we must relate the 

internal forces that appear in equilibrium to the deformations that appear in com-

patibility. This is done through two constitutive equations, equations whose form 

and factors depend upon the material out of which the cord and foam are consti-
tuted. In this example we have modeled both the foam and the cords as linear 
springs. That is we write 
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c 

Fc kc δc ⋅= where kc 25 lb in⁄( )= 

and 

F f k f δ f ⋅= where k f 400 lb in⁄( )= 

These last are two more equations, but  no more unknowns. Summing up we 

see we now have four linearly independent equations for the four unknowns, — 

the two internal forces and the two measure of deformation. 

There are various ways to solve this set of equations; I first write δ
f 

in terms of 

–δ using compatibility, i.e. = ∆ δ then express both unknown forces in δ f c 

terms of δ . 
c 

F = k ⋅ δ and F f = k ⋅ (∆ δ )– c c c c 

Equilibrium then yields a single equation for the extension of the cords, namely
k f 

–k f ⋅ (∆ δ ) – 4kδ = 0 so δc = ∆ ⋅ --------------------
c c 4k + k fc 

and we find the tension in the cords, F to be: 
c 

F = k ⋅ δ = 20 lb. c c c 

The compressive force in the foam is four times this, namely 80 lb, since there 

are four cords. Finally, we find that the extension of the cords and the compres-

sion of the foam are 

δ = 0.8 in. and δ f = 0.2 in. c 

which sum to the original gap, ∆. 

This simple exercise10 captures all of the major features of the solution of stat-

ically indeterminate problems. We see that we must contend with three require-
ments: Static Equilibrium, Compatibility of Deformation, and Constitutive 
Relations. A less fancy phrasing for the latter is Force-Deformation Equations. 

We turn now to a third exercise which includes truss members under uniaxial 

loading. 

10. Simplicity is not meant to imply that the exercise is not without practical importance or that it is a simple mat-
ter to conjure up all the required relationships: If I were to throw in a little dash of the dynamics of a single 
degree of freedom, Physics I, Differential Equations, mass-spring system I could start designing cord-foam 
support systems for the safe transport of fragile equipment over bumpy roads. More to come on this score. 
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Exercise 5.3 

I know that the tip deflection at the end C of the structure — made of a rigid 
beam ABC of length L= 4m, and two 1020CR steel support struts, DB and 
EB, each of cross sectional area A and intersecting at a= L/4 — when sup-
porting an individual weighing 800 Newtons is 0.5mm. What if I suspend 
more individuals of the same weight from the point C; when will the struc-
ture collapse? 

L 

L/4
D 

A 

B C 

E 

60o 

45o 

Ax 

B C 

60o 

45oAy 

FE 

FD 

W 

Here is a problem statement which, when you approach the punch line, 

prompts you to suspect the author intends to ask some ridiculous question, e.g., 

“What time is it in Chicago?” No matter. We know that if it’s in this textbook it is 

going to require a free-body diagram, application of the requirements of static 

equilibrium, and now, compatibility of deformation and constitutive equations. So 

we proceed. I start with equilibrium, isolating the rigid bar, ABC. 

Force Equilibrium: 

A – FD ⋅ cos 45o – FE ⋅ cos 60o = 0x 

Ay + FD ⋅ sin 45o – FE ⋅ sin 60o – W = 0 

Moment equilibrium (positive ccw), about point11 A yields 

FD ⋅ sin 45o ⋅ (L ⁄ 4) – FE ⋅ sin 60o ⋅ (L ⁄ 4) – WL = 0 

These are three equations for the four unknowns, A , A , F , and F . The struc-
x y D E

ture is redundant. We could remove either the top or the bottom strut and the 

remaining structure would support an end load – not as great an end load but still 

some significant value. 

11. Member ABC is not a two-force member even though it shows frictionless pins at A, B and C. In fact it is not 
a two-force member because it is a three-force member– three forces act at the three pins (F

D 
and F

E 
may be 

thought of as equivalent to a single resultant acting at B). The member must also support an internal bending 
moment, i.e., over the region BC it acts much like a cantilever beam. Note that, while there can be no couple 
acting at the interface of the frictionless pin and the beam at B, there is a bending moment internal to the 
beam at a section cut through the beam at this point. If you can read this and read it correctly you are master-
ing the language. 
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Compatibility of Deformation: 

60o 

45o 

∆Β 
∆Χ 

∆Β 

∼ 45o 

δD 

∆Β 

∼ 30oδE 

The deformations of member BD and mem-

ber BE are related. How they relate is not 

obvious. We draw a picture, attempting to 

show the motion of the system from the 

undeformed state (W=0) to the deformed 

state, then relate the member deformations 

to the displacement of point B. 

I have let ∆B represent the vertical dis-

placement of point B and ∆C the vertical 

displacement at the tip of the rigid beam. 

Because I have said that member ABC is 

rigid, there is no horizontal displacement 

of point B or at least none that matters. If 

the member is elastic, the horizontal dis-

placement should be taken into account in 

relating the deformations of the two struts. When the member is rigid, there is a 

horizontal displacement of B but for small vertical displacements, ∆B, the horizon-

tal displacement is second order. For example, if ∆B/L is of order 10
-1

, then the 

horizontal displacement is of order 10
-2

. 

Shown above the full structure is an exploded view of the vertical displace-

ment ∆B and its relationship to the deformation of member DB, the extension δ
D

. 

From this figure I take 

δD = ∆B ⋅ cos 45o = ( 2 2⁄ )∆B 

Shown at the bottom is an exploded view of the vertical displacement and its 

relationship to the deformation of member EB. Taking the measures of deforma-

tion as positive in extension, consistent with our convention of taking the member 

forces as positive in tension, and noting that member EB will be in compression, 

we have 

δE = –∆B ⋅ cos 30o = –( 3 2⁄ )∆B 

These two equations relate the deformations of the two struts through the vari-

able ∆B. We can read them as saying that, for small deflections and rotations, the 
extension or contraction of the member is equal to the projection of the dis-
placement vector upon the member. 

Only if these equations are satisfied are these deformations compatible; only 

then will the two members remain together, joined at point B. This is then our 

requirement of compatibility of deformation. 
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Constitutive Equations: 
These are the simplest to write out. We assume the struts are both operating in 

the elastic region. We have 

σDB = E εDB ⋅ or  FD ⁄ A = E δD ⋅ ⁄ ( 2 ⋅ L 4⁄ ) 

and 

σEB = E εEB ⋅ or  FE A⁄ = E ⋅ δDE L(⁄ ⁄ 2) 

where I have used the geometry to figure the lengths of the two struts. 

Now let’s go back and see what was given, what was wanted. We clearly are 

interested in the forces in the two struts, the two F’s; more precisely, we are inter-

ested in the stresses engendered by the end load W, for if either of these stresses 

reaches the yield strength for 1020CR steel we leave the elastic region and must 

consider the possibility of collapse of our structure. These forces, in turn, depend 

upon the member deformations, the δ’s which, in turn depend upon the vertical 

deflection at B, ∆B. 

We can think of the problem, then, as one in which there are five unknowns. 

We see that we have seven equations available, but note we have the horizontal 

and vertical components of the reaction force at A as unknowns too, so everything 

is in order. In fact we only need work with five of the seven equations because A 

and A appear only in the two, force equilibrium equations. The wise choice of 
y 

point A as our reference point for moment equilibrium enables us to proceed with-

out worrying about these two relations 12 I first express the member forces in 

terms of ∆B using the constitutive and compatibility relations. I obtain 

FD = 2 ⋅ (AE ⁄ L) ⋅ ∆B and FE = – 3 ⋅ (AE ⁄ L) ⋅ ∆B 

where the negative sign indicates that member EB is in compression. Note that the magni­
tude of the tensile load in DB is greater than the compression in member EB. Now substi­
tuting these for the forces as they appear in the equation of moment equilibrium I obtain 
the following relationship between the end load W and the vertical displacement of point 
B, namely: 

 3 2 2+
W =  ------------------- ⋅ (AE ⁄ L) ⋅ ∆B8 

This relationship is worth a few words: It relates the vertical force, W, at the 

point C, at the end of the rigid beam, to the vertical displacement, ∆B,at another 
point in the structure. The factor of proportionality can be read as a stiffness, k, 

like that of a linear spring. Note that the dimensions of the factor, (AE/L) are just 

force per length. 

12.  If we were concerned, as perhaps we should be, with the integrity of the fastener at A we would solve these 
two equations to determine the reaction force. 

x 
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Now I can use this, and the observation that when W= 800N, the tip deflection 

is 0.5mm to obtain an expression for the factor (AE/L). But first I have to relate ∆B 

to the tip deflection ∆C =.5mm. For this I return to my sketch of the deformed 

geometry and note, if (and only if) ABC is rigid then the two deflections are 

related, “through similar triangles” by ∆B = ∆C ⁄ 4 

This then yields 

8W(AE ⁄ L) = ----------------------------------------------- = 8.76 x 106 N m⁄
∆C 
------ +  ⋅ (3 2 2)   4 

Now with the length given as 4 meters and E the elastic modulus, found from a 

2
table in Chapter 7, to be 200× 10

9 N/m , we find that the cross sectional area is 

2A = 1.76 x 10 4 – m = 176 mm2 

If the struts were solid and circular, this implies a 15 mm diameter.

The stress will be bigger in member DB than member EB. In fact, from our


E Bexpression above for FD, we have σD = 2 ⋅ ⋅ (∆ ⁄ L) This, evaluated for the 

particular deflection recorded with one individual supported at C and taking E as 

2
before yields  σ

D
 = 12.6×10

6 N/m . 

If we idealize the constitutive behavior as elastic-perfectly plastic and take the 

2
yield strength as 600×10

6 N/m , we conclude that we could suspend forty-seven 
individuals, each a hefty weight of 800 Newtons before the onset of yield in the 

strut BD, before collapse becomes a possibility.13 But will it collapse at that 

point? No, not in this idealized world anyway. Member EB has yet to reach its 

yield strength; once it does, then the structure, again in this idealized world, can 

support no further increase in end load without infinite deflection and deforma-

tions of the struts. 

13.  This is a strange kind of problem – using the observed displacement under a known load to calculate, to 
back-out the cross sectional areas of the struts. The ordinary, politically correct textbook problem would 
specify the area and everything else you needed (but not a wit more) and ask you to determine the tip dis-
placement. But nowadays machines are given that kind of straight-forward problem to solve. A more chal-
lenging kind of dialogue in Engineering Mechanics – common to diagnostic situations where your structure 
is not behaving as expected, when something goes wrong, deflects too much, fractures too soon, resonates at 
too low a frequency, and the like – demands that you construct different scenarios for the observed behavior, 
e.g., (did it deflect too much because the top strut exceeded the yield strength?), and test their validity. The 
fundamental principles remain the same, the language is the same language, but the context is much richer; it 
places greater emphasis upon your ability to formulate the problem, to construct a story that explains the sys-
tem’s behavior. Often, in these situations, you will not have, or be able to obtain, full or complete information 
about the structure. In this case, backing out the area of the struts might be just one step in diagnosing and 
explaining the observed and often mystifying, behavior. 
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5.2 Matrix analysis of Truss Structures ­
Displacement Formulation 

The problems and exercises we have assigned to date have all been amenable to 

solution by hand. We now consider a method of analysis especially well suited for 

truss structures that takes advantage of modern computer power and allows us to 

address structures with many nodes and members. Our aim is to find all internal 

member forces and all nodal displacements given some external forces applied at 

the nodes. In this, we make use of a displacement formulation of the problem; the 

unknowns of the final set of equations we give the computer to solve are the com-

ponents of the node displacements. We use matrix notation in our formulation as 

an efficient and concise way to represent the large number of equations that enter 

into our analysis. 

These equations will account for i) equilibrium of internal member forces and 

external forces applied at the nodes, ii) the force/deformation behavior of each 

member and iii) compatibility of the extension and contraction of members with 

the displacements at the nodes. If the structure is statically determinate and we 

seek only to determine the forces in the truss members, we need only consider the 

first of these three sets of equations. If, however, we want to go on and determine 

the displacements of the nodes as well, we then must consider the full set of rela-

tions. If the truss is statically indeterminate, if it has redundant members, then we 

must always, by necessity, consider the deformations of members and displace-

ments of nodes as well as satisfy the equilibrium equations. 

To illustrate the displacement method we do two examples, one that could be 

done by hand, the second that is more efficiently done by computer. 

Exercise 5.3– The members of the redundant structure shown below have 
the same cross sectional area and are all made of the same material. Show 

f12 f13 

f14 

X1 

Y1 

φφ 

i 

j 

Y1 

X1 

H 

v1 
u11 

2 3 4φ φ 

that the equations expressing force equilibrium of node #1 in the x and y 
directions, when phrased in terms of the unknown displacements of the 
node, u

1
, v

1
, take the form 

+2(AE ⁄ L) ⋅ (sin φ ⋅ cos φ2) ⋅ u1 = X1 and (AE ⁄ L) ⋅ (1 2 sin φ3) ⋅ v1 = Y 1 
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Note: We let X and Y designate the x,y components of the applied force at 
the node, while u1 and v1 designate the corresponding components of displace-
ment of the node. 

Equilibrium. with respect to the undeformed configuration,  of node #1 

– f 12 cos φ+ cos φ+ X1 = 0 and – f 12 sin φ– – f 14 sin φ+ Y 1 = 0f 14 f 13 

These are two equations in three unknowns as we expected since the structure 

is redundant. In matrix notation they take the form: 

φcos 0 φcos– 

φsin 1 φsin 

f 12 

f 13 

f 14 

X1 

Y 1 

= 

Compatibility of deformation of the three members is best viewed from the 

following perspective: Imagine an arbitrary displacement of node #1, a vector 

with two scalar x,y components 

u = u1i + v1 j 

where, as usual, i, j are two unit vectors directed along the x,y axes respectively. 

We take as a measure of the mem-
ber deformation, say of member 1-2, 

H 

1

2 φ

δ12

t12 = cosφ  i+ sin φ j 
the projection of the displacement u = u1 i+ v1 j 
upon the member. We must be careful 

to take account if the member extends = u • t12
or contracts. In the second example we 

show a way to formally do this bit of 

accounting. Here we rely upon a 

sketch. Shown below is member 1-2 

and an arbitrary node displacement u 
drawn as if both of its components 

were positive.

 The projection upon the member is given by the scalar, or dot product 

• t12 = u t12 where = cos φi + sin φjδ12 

is a unit vector directed as shown, along the member in the direction of a positive exten­
sion.

= u1 cos φ+ v1 sin φδ12


 We obtain δ14 = –u1 cos φ+ v1 sin φ


δ13 = v1 

These three equations relate the three member deformations to the two nodal displace­
ments14. If they are satisfied, we can rest assured that our structure remains all of one piece 
in the deformed configuration.    In matrix notation, they take the form: 
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--------

δ12 cos φ sin φ 
=δ13 0 1 

u1 

δ14 – cos φ sin φ 
v1 

Keeping count, we now have five scalar equations for eight unknowns, the 

three member forces, the three member deformations, and the two nodal displace-

ments. We turn now to the three... 

Force-Deformation relations are the usual for a truss member, namely 

f 12 = (AE ⁄ L12 ) ⋅ δ12 f 13 = (AE ⁄ L13 ) ⋅ δ13 f 14 = (AE ⁄ L14 ) ⋅ δ14 

The lengths may be expressed in terms of H, e.g., 

L12 = L14 = H ⁄ sin φ and L13 = H 

These, in matrix notation, take the form 

 AE sin φ------------------- 0 0 H  
f 12 δ12 

f 13 = 0  AE 0 H 
δ13 

δ14f 14 
 AE sin φ0 0 ------------------- H  

Displacement Formulation. first expressing the member forces in term of the 

nodal displacements using compatibility and the force-deformation equations, (in 

matrix notation) 

 AE sin φ------------------- 0 0 H  
f 12 cos φ sin φ u1f 13 = 0  AE 0-------- 0 1 H  
f 14 

 AE sin φ 
– cos φ sin φ 

v1 

0 0 ------------------- H  

then substitute for the forces in the equilibrium equations. We have, again continuing with 
our matrix representation: 

14. Note that the horizontal displacement component, u1, engenders no elongation or contraction of the middle, 

vertical member. This is a consequence of our assumption of small displacements and rotations. 



148 Chapter 5 
------------------

-------

------------------

φcos 0 φcos– 

φsin 1 φsin 

AE φsin 
H 

-  
  0 0 

0 
AE 
H 

-  
  0 

0 0 
AE φsin 

H 
-  

  

φcos φsin 

0 1 

φcos– φsin 

u1 

v1 

⋅ ⋅ ⋅ 
X1 

Y 1 

= 

Carrying out the matrix products yields a set of two scalar equations for the two nodal dis­
placements: 

2 0 X1 AE 2 sin φ(cos φ)
--------

u1 =  H  0 1 + 2 sin3 φ v1 Y 1 

These are the equilibrium equations in terms of displacements. They can be 

easily solved since they are uncoupled, that is each can be solved independently 

for one or the other of the nodal displacements. The symmetry of the structure is 

the reason for this happy outcome. This becomes clear when we write them out 

according to our more ordinary habit and obtain what we sought to show: 

(AE ⁄ H ) ⋅ (2 sin φcos φ2 )u1 = X1 

and 

+(AE ⁄ H ) ⋅ (1 2  sin φ3 )v1 = Y 1 

Unfortunately this decoupling doesn’t occur often in practice as a second 

example shows. We turn to that now, a more complex structure, which in a first 

instance we take as statically determinate. 

L 
L 

6 

5 

4 

3 

2 

1 

1 

2 

3 

4 

5 

u1, X1 

v1, Y1 

u2, X2 

v2, Y2 

u3, X3 

v3, Y3 

αα 

Now consider the truss structure shown above. Although this system is more 

complex than the previous example in that it has more degrees of freedom – six 

scalar nodal displacements versus two for the simpler truss – the structure is less 

complex in that it is statically determinate; there are no redundant or unnecessary 

members; remove any member and the structure would collapse. 
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We first develop a set of equilibrium equations by isolating each of the free 

nodes and requiring the sum of all forces, internal and external, to vanish. In this, 

lower case f will represent member forces, assumed to be positive when the mem-

ber is in tension, and upper case X and Y, the x and y components of the externally 

applied forces. 

α 
α α 

f

X
1 

1 

Y
1 

2 
3

 f
1 

X
2

 f
5 

f
4 

Y
2

Y
3

 f

f
6 X

3

3
f

 f
2 

f
2 

1 3 

- f - f cosα + X = 0 - f - f cosα  + f cosα+ X = 0 - f + f + X = 02 1 1 4 5 1 2 6 2 3

 - f sinα+ Y = 0 f sinα + f + f sinα + Y = 0 - f + Y = 0
1 1 5 3 1 2 3 3

These six equations for the six unknown member forces can be put into matrix 

form 

f 1 X1 cos α 1 0 0 0 0 
Y 1sin α 0 0 0 0 0 

f 2 

– cos α 0 0 1 cos α 0 X2f 3 = 
1– sin α 0 – 0 – sin α 0 f 4 Y 2 

0  1  – 0 0 0 1 f 5 X3 

0 0 1 0 0 0 f 6 Y 3 

We could, if we wish at this point, solve this system of six linear equations for 

the six unknown member forces f. If you are so inclined you can apply the meth-

ods you learned in your mathematics courses about existence of solutions, about 

solving linear systems of algebraic equations, and verify for yourself that indeed a 

unique solution does exist. And given enough of your spare time, I wager you 

could actually carry through the algebraic manipulations and obtain the solution. 

But our purpose is not to burden you with ordinary menial exercise but rather to 

show you how to formulate the problem for computer solution. We will let it do 

the menial and mundane work. 

Something is lost, something is gained when we turn to the machine to help 

solve our problems. The expressions you would obtain by hand for the internal 

forces would be explicit functions of the applied forces and the parameter α . For  

example, the second equation alone gives 

f 1 = Y 1 ⁄ ( sin α) 
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The computer, on the other hand, would produce, using the kinds of software common in 
industry, a solution for specific numerical values of the member forces if provided with a 
specific, numerical value for α and specific numerical values for the externally applied 
forces at the nodes as input. Of course the computer does this very fast, compared to the 
time it would take you to produce a solution by hand. And, if need be, with the machine 
you can make many runs and discover how your results vary with α. 

But note: How the solution changes with changes in the external forces applied 

at the nodes is a simpler matter: since the solutions will be linear functions of the 

X and Y’s you can scale your results for one loading condition to get another load-

ing condition. That’s what linear systems means. 

A small detour: 

The system is linear because we assumed that the structure experiences only 

small displacements and rotations. We wrote our equilibrium equations with 

respect to the undeformed geometry of the structure. If we thought of the structure 

otherwise, say as made of rubber and allowed for large displacements, our free-

body diagrams would be incorrect as they stand above. For example, the situation 

at node 3 would appear as at the right rather than as before (at the left) 

Y
3

 f
2 

f 3 X6 3

X
3 

3 

f

α2 
α3 

α6 

Y
3 

f
2 

f
3 6 f3 

- f + f + X = 0 - f cosα6(u)+ f
2
cosα2(u)+ X

3
= 06 2 3 6

       - f + Y = 0 - f sinα3(u) - f
6
sinα6(u)- f sinα2(u)+ Y

3
= 0 

3 3 3 2

and our equilibrium equations would now have the more complex form shown. 

In these, the alpha’s will be unknown functions of all the nodal displacements, 

for example α2 will depend upon the displacement of node 3 relative to node 1. 

We say that the equilibrium equations depend upon the displacements. 

But the displacements are functions of the extensions and contractions of the 

members. These, in turn, are functions of the forces in the members which means 

that the equations of equilibrium are no longer linear. The entries in our square 

matrix, the coefficients of the unknown forces in our system of six equilibrium 

equations, depend upon the member forces themselves. 

Fortunately, although we did so in our introductory exercise in Chapter 1, you 

will not be asked to consider large deformations and rotations. The reason is that 

most structures do not experience large deflections and rotations. If they do they 

are probably in the process of disintegration and failure. Indeed, eventually we 
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will entertain a discussion of buckling which ordinarily, though not always, is a 

mode of failure. We leave, then, the study of such complex, but interesting, modes 

of behavior to other scholars. Our detour is complete; we return now to more ordi-

nary behavior. 

Out in the so-called real world, where truss structures span canyons, support 

aerospace systems, and have hundreds of nodes and members, complexity requires 

the use of the computer. Imagine a three-dimensional truss with 100 nodes. Our 

linear system of equilibrium equations would number 300; we say that the system 

has 300 degrees of freedom. That is, 300 displacement components are required to 

fully specify the deformed configuration of the structure. But that is not the end of 

it: if the structure includes redundant members and hence is statically indetermi-

nate, other equations which relate the member forces to member deformations and 

still others relating member deformations to node displacements must be written 

down and solved together with the equilibrium equations. You could still, theoret-

ically, solve all of these hundreds of equations by hand but if you want to remain 

industrially competitive, if you want to win the bid, you will need the services of 

a computer. 

To illustrate how our system is complicated by adding a redundant member, we 

connect nodes 3 and 4 with an additional member, number 7 in the figure. 

v3, Y3 v1, Y1 

L 
L 

6 

7 

4 

3 

2 

1 

1 

2 

3 

4 

5 

u1, X1 

u2, X2 

v2, Y2 

u3, X3 

αα 

5 

The number of linearly independent equilibrium equations remains the same, 

namely six, but two of the equations, expressing horizontal and vertical equilib-

rium of forces at node 3, now include the additional unknown member force f . 

Leaving to you the task of amending the free-body diagram of node #3, we have 

– f 6 + f 2 – f 7 cos α + X3 = 0 

– f 3 – f 7 sin α + Y 3 = 0 

With six equations for seven unknowns our problem becomes statically inde-
terminate or equilibrium indeterminate as some would prefer. The difficulty is not 

in finding a solution; indeed, there are an infinity of possible solutions. For exam-

ple we could choose the force in member six to be equal to zero and then solve for 

7
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all the other member forces. Or we could choose it to equal X and solve, or 10 
2 

lbs, or 2000 newtons, or 2.3 elephants, (just be careful with your units), whatever. 

Once having arbitrarily specified the force in member six, or the force in any sin-

gle member for that matter, the six equations will yield values for the forces in all 

the remaining six members. The difficulty is not in finding a solution, it is in find-

ing a unique solution. The problem is indeterminate. 

This unique solution, whatever it is, is going to depend upon the kind of mem-

ber we add to the structure as member number seven. It will depend upon the 

material properties and cross-sectional area of this new member; for that matter, it 

will depend upon the force/deformation behavior of all members. If the first six 

members are made of steel and have a cross-sectional area of ten square inches 

and member seven is a rubber band, we would not expect much difference in our 

solution for the forces in the steel members when compared to our original solu-

tion for those member forces without member seven. If, on the other hand, the 

added member is also made of steel and has a comparable cross-sectional area, all 

bets are off, or rather on. The effect of the new member will be significant; the 

member forces will be substantially different when compared to the statically 

determinate solution. 

Our strategy for solving the statically indeterminate problem is the same one 

we followed in the previous exercise: We will express all seven unknown internal 

forces f in terms of the seven, unknown, member deformations which we will des-

ignate by δ. We will then develop a method for expressing the member deforma-

tions, the δ’s, in terms of the x and y components of nodal displacements u and v. 

There are six of these latter unknowns. After substitution, we will then obtain our 

six equilibrium equations in terms of the six unknown displacement components. 

Voila, a displacement formulation. 

Equilibrium 
The full set of six equilibrium equations in terms of the seven unknown mem-

ber forces may be written in matrix form as 

f 1 X1 
cos α 1 0 0 0 0 0 f 2 Y 1sin α 0 0 0 0 0 0 f 3 

– cos α 0 0 1 cos α 0 0 f 4 

X2= 
1– sin α 0 – 0 – sin α 0 0 Y 2f 50  1  – 0 0 0 1 cos α X3 

0 0 1 0 0 0 sin α f 6 Y 3f 7 

or in a condensed form as: [ ] f XA { } = { }  
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Note that the array [A] has six rows and seven columns; there are but six equa-

tions for the seven unknown internal forces. 

Force-Deformation 

We assume that the truss members behave like linear springs and, as before, 

take the member force generated in deformation of the structure as proportional to 

their change in length δ. We introduce the symbol k for the expression (AE/L) 

where A is the member cross-sectional area, L its length, and E its modulus of 

elasticity. For example, for member number 1, we take 

f 1 = k1 ⋅ δ1 where k1 = A1E1 ⁄ L1 

In matrix form, 

f 1 k1 0 0 0 0 0 0  δ1 

f 2 0 k2 0 0 0 0 0  δ2 

f 3 0 0  k3 0 0 0 0  δ3 

f 4 = 0 0 0  k4 0 0 0  δ4 

f 5 0 0 0 0  k5 0 0  δ5 

f 6 0 0 0 0 0  k6 0 δ6 

f 7 0 0 0 0 0 0  k7 δ7 

or again, in condensed form: f = k ⋅ δ 

Compatibility of Deformation 

Taking stock at this point we see we have thirteen equations but fourteen 
unknowns; the latter include seven member forces f and seven member deforma-

tions δ. In this our final step, we introduce another six unknowns, namely the x 
and y components of the displacements at the nodes and require that the member 

deformations be consistent with these displacements. Seven equations, one for 

each member, are required to ensure compatibility of deformation. This will bring 

our totals to twenty equations for twenty unknowns and allow us to claim victory. 
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To relate the δ’s to the node displace-

ments we consider an arbitrarily oriented 

member in its undeformed position, then 

in its deformed state, a state defined by 

the displacements of its two end nodes. 

In the following derivation, bold face 

type will indicate a vector quantity. 

Consider a member with end nodes 

numbered m and n. Let u be the vector 
m 

displacement of node m. In terms of its x 
and y scalar components we have: 

u = u i + v jm m m 

where i and j are unit vectors in the x,y direc­
tions. A similar expression may be written for 
u . 

n 

Let L be a vector which lies along 
0 

the member, going from m to n, in its 

original, undeformed state and L a vector 

along the member in its displaced, 

deformed state. Vector addition allows us 

to 

un 

um n 

m 

Lo 

L 

i 

j 

undeformed 

deformed 

φ

 Member 3 

3 

Lo 
L 

u2 =u2i + v2j

 u3 =u3i + v3j
to = 1j 

2 

to write: L + u = u + Lo n m 

Now consider the projection of all of these vector quantities upon a line lying 

along the member in its original, undeformed state, that is along L . Let t be a 
0 0 

unit vector in that direction, directed from m to n. 

t = cos φi + sin φ jo 

The projection of L
0 

upon itself is just the original length of the member, the 

magnitude of L
0
, L

0
. The projections of the node displacements are given by the 

scalar products t •u and t • u . Similarly the projection of L is t • L which we 
0 m 0 n 0 

take as approximately equal to the magnitude of L. This is a crucial step. It is only 

legitimate if the member experiences small rotations. But note, this is precisely 

the assumption we made in writing out our equilibrium equations. 

Our vector relationship then yields, after projection upon the direction t of all 
0 

of its constituents 

–L L ≈ u ⋅ t – u ⋅ to n o m o 

or since the difference of the two lengths is the member’s extension, we have 

δ = u ⋅ t – u ⋅ tn o m o 

For member 1, for example, carrying out the scalar products we have 

δ3 = v3 – v2 
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Note how the horizontal displacement components, the u components, do not enter into 
this expression for the extension (or compression if v > v

3
) of member 3. That is, any dis­

2 
placement perpendicular to the member does not contribute to its change its length! This is 
clearly only approximately true, only true for small displacements and rotations. 

Similar equations can be written for each member in turn. In some cases, φ is 

zero, in other cases a right angle. The full set of seven compatibility relationships, 

one for each member, can be written in matrix form as: 

δ1 
cos α sin α – cos α – sin α 0 0 u1δ2 1 0 0  0  1  – 0 v1δ3 0 0 0  1  –  0 1 

δ4 0 0 1 0 0 0 
u2=


δ5 
0 0


δ6 
0 0


δ7 
0 0


cos α – sin α 0 0 
v2 

0 0 1 0 u3 

0 0 cos α sin α v3 

T 
In condensed form we write δ = A ⋅ u 

where [A]T is the transpose of the matrix appearing in the equilibrium equations [A]. The 
consequence of this seemingly happenstance event will be come clear in the final result. 

Equilibrium in terms of Displacement 

We now do some substitution to obtain the equilibrium equations in terms of 

the displacement components at the nodes, all the u’s and v’s. We first substitute 

for the member forces f, their representation in terms of the member deformations 

δ and obtain: 

A k δ⋅ ⋅ X= 

Now substituting for the δ column matrix its representation in terms of the 

node displacements we obtain: 

A k A 
T 

u ⋅ ⋅ ⋅ X= 

which are the six equilibrium equations with the six displacement components as 
unknowns. 

The matrix product [A][k][A]T can be carried out in more spare time. We designate the 
result by [K] and call it the system stiffness matrix. It and all of its elements are shown 
below: In this, c is shorthand for cosα and s shorthand for sinα. 

K A= k A 
T 

⋅ ⋅ 
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[K] is symmetric six by six. 

The equilibrium equations in terms of displacement are, in condensed form 

K 

k1c 
2 

k1 )+( k1cs k1c– 
2 

k1c– s k2 0 

k1cs k( 1s 
2 ) 

k1 – cs k1s 
2 

– 0 0 

k1c– 
2 

k1 – cs k4 k+ 
1
c 

2 
k+ 

5
c 

2 

  
  k1cs k– 

5
cs( ) 0 0 

k1c– s k1s 
2 

– k1cs k– 
5
cs( ) k3 k1+ s 

2 
k+ 5s 

2
( ) 0 k– 3 

k2 0 0 0 k2 k+ 
6 

k+ 
7
c 

2( ) k7cs 

0 0 0 k– 3 k7cs k3 k+ 
7
s 

2( ) 

= 

 (and will always be!) and, for our example is 

K u ⋅ X= 

This is the set of equations the computer solves given adequate numerical val-

ues for 

•	 the material properties including the Young’s modulus or modulus of elas­
ticity, E, and the member’s cross-sectional area A, 

•	 member nodes and their coordinates, from which member lengths may be 
figured, and subsequently together with the material properties, the mem­
ber stuffiness, (AE/L), computed, 

•	 the externally applied forces at the nodes, 

•	 specification of any fixed degrees of freedom, i.e., which nodes are 
pinned. 

The computer, in effect, inverts the system, or global, stiffness matrix [K], and 

computes the node displacements u and v given values for the applied forces X and 

Y. Once the displacements have been found, the deformations can be computed 

from the compatibility relations. Making use of the force/deformation relations in 

turn, the deformations yield values for the member forces. All then has been 

resolved, the solution is complete. 

Before ending this section, one final observation. A useful physical interpreta-

tion of the elements of the system stiffness matrix is available: In fact, the ele-

ments of any column of the [K] matrix can be read as the external forces that are 

required to produce or sustain a special state of deformation, or system of node 

displacements – namely a unit displacement corresponding to the chosen column 

and zero displacements in all other degrees of freedom. This interpretation fol-

lows from the rules of matrix multiplication. 
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A Note on Scaling 

It is useful to consider how the solution for one particular structure of a speci-

fied geometry and subject to a specific loading can be applied to another structure 

of similar geometry and similar loading. By “similar loading” we mean a load 

vector which is a scalar multiple of the other. By “similar geometry” we mean a 

structure whose member lengths are a scalar multiple of the corresponding mem-

ber lengths of the other - in which case all angles are preserved. 

For similar loading, relative to some reference solution designated by a super-

script “*”, i.e., 

*=K ⋅ u * X 

we have, if [X] = β [X*] simply that the displacement vector scales accordingly, that is, 
from 

* 
K ⋅ u = X = β ⋅ [X ] 

we obtain [u] = β [u*] . 

This is a consequence of the linear nature of our system (which, in turn, is a 

consequence of our assumption of relatively small displacements and rotations). 

What it says is that if you have solved the problem for one particular loading, then 

the solution for an infinity of problems is obtained by scaling your result for the 

displacements (and for the member forces as well) by the factor β which can take 

on an infinity of values. 

For similar geometries, we need to do a bit more work. We note first that for 

both statically determinate and indeterminate systems, the only way length enters 

into our analysis is through the member stiffness, k, where kj = AE/Lj . (We  

assume for the moment that the cross-sectional areas and the elastic modulae are 

the same for each member). The entries in the matrix [A], and so [AT] are only 

functions of the angles the members make, one with another. 

Let us designate some reference geometry, drawn in accord with some refer-

ence length scale, by a superscript “*”, a reference structure in which the member 

lengths are defined for all members, j= 1,n by 

* * L j = β j ⋅ L 

The force-deformation relations f = can then be writtenk ⋅ δ 
* 

f = (1 ⁄ L ) ⋅ kβ ⋅ δ 

where the elements of the matrix kβ  are given by AE/βj . 

Re-doing our derivation of the equilibrium equations expressed in terms of dis-

placements yields. 



158 Chapter 5 
Kβ u * ⋅ L * 
X⋅= 

where the stiffness matrix K β  is given by 

K β A= kβ A 
T 

⋅ ⋅ 

Note that this is only dependent upon the relative lengths of the members, upon the βj. 
Then if we change length scales, say our reference length becomes L, we have to solve 

K β 
u⋅ L X⋅= 

But the solution to this is the same, in form, as the solution to the “*” problem, differing 
only by the scale factor L/L*. Hence, solving the reference problem gives us the solution 
for an infinite number of geometrically similar structures bearing the same loading. (Note 
that if the loading is scaled down by the same factor by which the geometry is scaled up, 
the solution does not change!) 

5.3 Energy Methods 15 

We have now all the machinery, concepts and principles, we need to solve any 

truss problem. The structure can be equilibrium indeterminate or determinate. It 

matters little. The computer enables the treatment of structures with many degrees 

of freedom, determinate and indeterminate. 

But before the computer existed, mechanicians solved truss structure prob-

lems. One of the ways they did so was via methods rooted in an alternative per-

spective - one which builds on the notions of work and energy. We develop some 

of these methods in this section but will do so based on the concepts and princi-

ples we are already familiar with, without reference to energy. 

The first method may be used to determine the displacements of a statically 
determinate truss structure. Generalization to indeterminate structures will fol-

low. 

15. The perspective adopted here retains some resemblance to that found in Strang, G., Introduction to Applied 
Mathematics, Wellesley-Cambridge Press, Wellesley, MA., 1986. I use “Energy Methods” only as a label to 
indicate what this section is meant to replace in other textbooks on Statics and Strength of Materials. 
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L 
6 

5 
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u1 

u2 

u3 

v3 

αα 

L

 v2 

P 

Before proceeding, we review 

how we might determine the 

displacements following the 

path taken in developing the 

stiffness matrix. We take as an 

example the statically determi-

nate example of the last sec-

tion. We simplify the system, 

applying but one load, P in the 

vertical direction at node 1. 

The system is determinate so 

we solve for the six member 

forces using the six equations of equilibrium obtained by isolating the structure’s 

three free nodes. 

- f - f cosα = 0 - f - f cosα  + f cosα = 0 - f + f  = 02 1 4 5 1 6 2

 - f sinα + P = 0 f  sinα + f + f sinα  = 0 - f  = 0
1 5 3 1 3

These give:

f1 = P/ sin α; f2 = - P cos α / sin α; f3 = 0; f4 = 2P cos α / sin α;

f5 = - P/ sin α;  and f6 = - Pcos α / sin α


where a positive quantity means the member is in tension, a negative sign indicates com­
pression. 

With proceed to determine member deformations, [δ], from the force/deforma-

tion relationships 

[δ] = [ kdiag ]-1 [f] 

that is, from δ1 = f1/k1, δ2 = f2/k2, ... etc; where the k’s are the individual member stiff­
ness, e.g., 

k1  = A1E1/L1  ... etc. 

Then, from the compatibility equation relating the six member deformations to 

the six displacement components at the nodes, 

[δ] = [ A ]T[u] 

we solve this system of six equations for the six displacement components u1, v1, u2, v2, u3, 
v3. That’s it. 

A Virtual Force Method 

Now consider the alternative method: 

We start with the compatibility condition: [δ] = [A]
T

[u] 
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and take a totally unmotivated step, multiplying both sides of this equation by the trans­
pose of a column vector whose elements may be anything whatsoever;

 [f*]
T

[δ] = [f*]T[A]
T

[u] 

This arbitrary vector bears an asterisk to distinguish from the vector of member forces act­
ing in the structure. 

At this point, the elements of [f*] could be any numbers we wish, e.g., the price of coffee 
in the six largest cities of the US (it has to have six elements because the expressions on 
both sides of the compatibility equation are 6 by 1 matrices). But now we manipulate this 
relationship, taking the transpose of both sides and write 

[δ]
T

[f*] = [u]
T

[A][f*] 

then consider the vector [f*] to be a vector of member forces, any set of member forces 
that satisfies the equilibrium requirements for the structure, i.e.,

 [A][f*] = [X*] 

So [X*] is arbitrary, because [f*] is quite arbitrary - we can envision many dif-

ferent vectors of applied loads. 

With this, our compatibility pre-multiplied by our arbitrary vector, now read as 

member forces, becomes 

[δ]
T

[f*] = [u]
T

 [X*] or [u]
T

 [X*] = [δ]
T

[f*] 

(Note: The dimensions of the quantity on the left hand side of this last equation 

are displacement times force, or work. The dimensions of the product on the right 

hand side must be the same). 

Now we choose [X*] in a special way; we take it to be a unit load, a virtual 
force, along a single degree of freedom, all other loads zero. For example, we take

 [X*]T  = [ 0  0  0  0  0  1 ] 

a unit load in the vertical direction at node 3 in the direction of v3. 

Carrying out the product [u]
T 

[X*] in the equation above, we obtain just the 

displacement component associated with the same degree of freedom, v3 i.e.,

 v3 = [δ]
T

[f*] 

We can put this last equation in terms of member forces (and member stiffness) 

alone using the force/deformation relationship and write:

 v3 = [f]
T

[k]
-1

[f*] 

And that is our special method for determining displacements of a statically 

determinate truss. It requires, first, solving equilibrium for the “actual” member 

forces given the “actual” applied loads. We then solve another force equilibrium 

problem - one in which we apply a unit load at the node we seek to determine a 

displacement component and in the direction of that displacement component. 
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With the “starred” member forces determined from equilibrium, we carry out the 

matrix multiplication of the last equation and there we have it. 

We emphasize the difference between the two member force vectors appearing 

in this equation; [f] in plain font, is the vector of the actual forces in structure 

given the actual applied loads. [f*] with the asterisk, on the other hand, is some, 

originally arbitrary, force vector which satisfies equilibrium — an equilibrium 

solution for member forces corresponding to a unit loading in the vertical direc-

tion at node 3. 

Continuing with our specific example, the virtual member forces correspond-

ing to the unit load at node 3 in the vertical direction are, from equilibrium: 

f*1 = 0 

f*2 = 0 

f*3 = 1 

f*4 = cosα /sinα 
f*5 = -1/sinα 
f*6 = 0 

We these, and our previous solution for the actual member forces, we find 

k

v3 = (P/k4)(2 cosα /sinα)(cosα /sinα)+ (P/k5)/sin
2α 

If the members all have the same cross sectional area and are made of the same 

material, then the ratio of the member stiffness goes inversely as the lengths so 

5 = cosα k4 

and, while some further simplification is possible, we stop here. 

Virtual Force Method for Redundant Trusses - Maxwell/Mohr Method. 

1 2 3 4 5 

u1 

u2u2

P 

Let’s say we have a redundant structure as 

shown at the left. Now assume we have found 

all the actual forces, f1, f2,....f5, in the members 

by an alternative method yet to be disclosed 

(it immediately follows this preliminary 

remark). The actual loading consists of force 

components X1 and X2 applied at the one free 

node in directions indicated by u1 and u2. 

Now say we want to determine the horizontal 

component of displacement, u1; Proceeding 

in accord with our Force Method #1, we must find an equilibrium set of member 

forces given a unit load applied at the free node in the horizontal direction. 
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Since the system is redundant, our equilib-

rium equations number 2 but we have 5 

unknowns. The system is indeterminate: it 

does not admit of a unique solution. It’s not 

that we can’t find a solution; the problem is 

we can find too many solutions. Now since 

our “starred” set of member forces need only 

satisfy equilibrium, we can arbitrarily set the u1 

1 3 

u2 

α1 

redundant member forces to zero, or, in effect, 

remove them from the structure. The figure at 

the right shows one possible choice

 For a unit force in the horizontal direction, we have 
*f1 = 1/cosα1  and f3 

* = - 1 sinα1 /cosα1 

so the displacement in the horizontal direction, assuming again we have determined the 
actual member forces, is 

u1 = (f1/k1)(1/cosα1) - (f3/k3)(1 sinα1 /cosα1) 

(Note: If the structure is symmetric in member stiffness, k, then this compo-

nent of displacement, for a vertical load alone, should vanish. This then gives a 

relationship between the two member forces). 

We now develop an alter- P 
native method to determine 

the actual member forces in 

statically indeterminate truss 

structures. Consider, for 

example, the redundant 

structure shown at the right. 

We take members 11 and 12 

as redundant and write equi-

librium in a way that explic-

itly distinguishes the forces 

in these two redundant mem-

bers from the forces in all the other members. The reasons for this will become 

clear as we move along. 

1 

2 9 
4 

5 

8 

10 

11 12 

1 3 5 

2 4 6 

u7 

v7 

3 

6 

7 

f d ⋅ =AAd Xr 
f r 

In this, because there are 5 unrestrained nodes, each with two degrees of free-

dom, the column matrix of external forces, [X], is 10 by 1. Because there are two 

redundant members, the column matrix [fr] is 2 by 1. The column matrix of what 

we take to be “determinate member forces” [fd] is 10 by 1, i.e., there are a total of 
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12 member forces. Here, then, are 10 equations for 12 unknowns - an indetermi-

nate system. 

The matrix [Ad] has 10 rows and 10 columns and contains the coefficients of 

the 10 [fd]. The matrix [Ar], containing coefficients of the 2 [fr], has 10 rows and 2 

columns. 

Equilibrium can then be re-written 

[Ad][fd] + [Ar][fr] = [X] or [Ad][fd] = - [Ar][fr] + [X] 

but leave this aside, for now, and turn to compatibility. What we are after is a way to deter­
mine the forces in the redundant members without having to explicitly consider compati­
bility of deformation. Yet of course compatibility must be satisfied, so we turn there now. 

The relationship between member deformations and nodal displacements can 

also be written to explicitly distinguish between the deformations of the “determi-

nant” members and those of the redundant members, that is, the matrix equation 

[δ] = [A]T[u] can be written: 

d 

r 

δd u[ ] = [ Ad ]
T ⋅ [ ]Tδ Ad = ⋅ u or  and 

ATδ
r δ A u[ ] = [ ] T ⋅ [ ]r r

The top equation on the right is the one we will work with. As in force method 

#1, we premultiply by the transpose of a column vector (10 by 1) whose elements 

can be any numbers we wish. In fact, we multiply by the transpose of a general 

matrix of dimensions 10 rows and 2 columns - the 2 corresponding to the number 

of redundant member forces. The reasons for this will become clear soon enough. 

We again indicate the arbitrariness of the elements of this matrix with an asterisk. 

We write 

[fd*]T [δd] = [fd*]T [Ad]
T[u] 

In this [fd*]T  is 2 rows by 10 columns and [δd] is 10 by 1. 

Now take the transpose and obtain 

[δd]T[fd*] = [u]T [Ad][fd*] 

At this point we choose the matrix [fd*] to be very special; each of the two col-

umns of this matrix (of 10 rows) we take to be a solution to equilibrium. The first 

column is the solution when 

•  the external forces [X] are all zero and 

•  the redundant force in member 11 is taken as a virtual force of unity. 

The second column is the solution for the determinate member forces when 

•  the external forces [X] are all zero and 

•  the redundant force in member 12 is taken as a virtual force of unity. 
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That is, from equilibrium, 

[Ad] [fd*] = - [Ar][ I ] where [ I ] is the identity matrix. 

With this, our compatibility condition becomes 

[δd]T[fd*] = - [u]T [Ar] and taking the transpose of this, noting that [δr] =  

[Ar]
T[u] 

we have 

[fd*]T [δd] = - [δr] 

which gives us the redundant member deformations, [δr], in terms of the “determinate” 
member deformations, [δd]. 

But we want the member forces too so we now introduce the member force 

deformations relations which are simple enough, that is 

[δr] =  [kr]
-1 [fr] and [δd] = [kd]

-1 [fd] which enables us to write

 [fr] = -  [kr][fd*]T [kd]
-1 [fd] 

which, if given the determinate member forces, allows us to compute the redundant mem-

ber forces. 

Substituting, then, back into the equilibrium equations, we can eliminate the 

redundant forces, expressing the redundant forces in terms of the 10 other member 

forces, and obtain a system of 10 equations for the 10 unknowns [fd], namely 

[ [Ad] -  [Ar][kr][fd*]T [kd]
-1 ][fd] = [X] 

There we have it; a way to determine the member forces in a equilibrium inde-

terminate truss structure and we don’t have to explicitly consider compatibility. 

What we must do is solve equilibrium several times over; two times to obtain the 

elements of the matrix [fd*] in accord with the bulleted conditions stated previ-

ously, then, finally, the last equation above, given the applied forces [X]. 

To go on to determine displacements, we can apply force method #1 - apply a 

unit load according to the displacement component we wish to determine; use the 

above two equations to determine all member forces (with an asterisk to distin-

guish them from the actual member forces); then, with the artificial, equilibrium 

satisfying, “starred” member forces, carry out the required matrix multiplications. 

We might wonder how we can get away without explicitly considering compat-

ibility on our way to determining the member forces in an indeterminate truss 

structure. That we did include compatibility is clear - that’s where we started. 

How does it disappear, then, from view? 

The answer is found in one special, mysterious feature of our truss analysis. 

We have observed, but not proven, that the matrix relating displacements to defor-



165 Chapter 5 
mations is the transpose of the matrix relating the applied forces to member 

forces. 

That is, equilibrium gives  [A][f] = [X] 

While, compatibility gives  [δ] = [A]T[u] 

Now that is bizarre! A totally unexpected result since equilibrium and compat-

ibility are quite independent considerations. (It’s the force/deformation relations 

that tie the quantities of these two domains together). It is this feature which 

enables us to avoid explicitly considering compatibility in solving an indetermi-

nate problem. Where does it come from? How can we be sure these methods will 

work for other structural systems? 

Symmetry of the Stiffness Matrix - Maxwell Reciprocity 

The answer lies in that other domain; that of work and energy. In fact, one can 

prove that if the work done is to be path independent (which defines an elastic 

system) then this happy circumstance will prevail. 

Consider some quite general truss structure, loaded in the following two ways: 

Let the original, unloaded, state of the system be designated by the subscript “o”. 

A first method of loading will take the structure to a state “a”, where the 

applied nodal forces [Xa] engender a set of nodal displacements [ua], then on to 

state “c” where an additional applied set of forces [Xb] engender a set of addi-

a +tional nodal displacements, [ub]. Symbolically: o → → c = a b and the 

work done in following this path may be expressed as16 

c a c 

ud ∫ ud T udWorko → c = ∫[ ]X T ⋅ [ ] = [ ]X T ⋅ [ ] + ∫[ ]X ⋅ [ ]  
o o a 

and, in that the second integral can be expressed as 

∫ 
c c b b 

[ ]X T ⋅ [ ] = ∫[ Xa + (X Xa )]
T ⋅ [ ] = [ Xa ] ⋅ ∫ [ ] + ∫[ ]X T ⋅ [ ]ud – ud T ud ud

a a o o 

we have, for this path from o to c: 

Work o c→ X[ ] T [ ]⋅ 
o 

a 

∫ X[ ] T [ ]⋅ 
o 

b 

∫ X a[ ] T u b[ ]⋅+ += ud ud

A second method of loading will take the structure first to state “b”, where the 

applied nodal forces [Xb] engender a set of nodal displacements [ub], then on to 

state “c” where an additional applied set of forces [Xa] engender a set of addi-

16. We assume linear behavior as embodied in the stiffness matrix relationship [X] = [K][u]. 
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b +tional nodal displacements, [ua]. Symbolically: o → → c = a b And follow-

ing the same method, we obtain for the work done: 

Worko c→ X[ ] T [ ]⋅ 
o 

a 

∫ X[ ] T [ ]⋅ 
o 

b 

∫ Xb[ ] T ua[ ]⋅+ += ud ud

Comparing the two boxed equations, we see that for the work done to be path 

independent we must have 

T u[ X ]T ⋅ [ ] = [ Xb] ⋅ [ ]a ub a

or, with [X] = [K][u] 

[ ] T ⋅ [ ] ⋅ ub ub K [ ]u K [ ] = [ ] T ⋅ [ ] ⋅ ua a

from which we conclude that [K], the stiffness matrix, must be symmetric. 

K A ANow, since, as derived in a previous section, [ ] = [ ] ⋅ [kdiag] ⋅ [ ] T 
, we see 

how this must be if work done is to be path independent. 

A Virtual Displacement Method. 

Given the successful use of equilibrium conditions alone for, not just member 

forces, but nodal displacements and for indeterminate as well as determinate truss 

structures, we might ask if we can do something similar using compatibility con-

ditions alone. Here life gets a bit more unrealistic in the sense that the initial prob-

lem we pose, drawing on force method #1 as a guide, is not frequently 

encountered in practice. But it is a conceivable problem - a problem of prescribed 

displacements. It might help to think of yourself being set down in a foreign cul-

ture, a different world, where mechanicians have only reluctantly accepted the 

reality of forces but are well schooled in displacements, velocities and the science 

of anything that moves, however minutely. 

That is, we consider a truss 

structure, all of whose displace-

ment components are pre-

scribed, and we are asked to 

determine the external forces 

required to give this system of 

displacements. In the figure at 

the right, the vectors shown are 

meant to be the known pre-

scribed displacements. (Node 

#1 has zero displacement). The 

task is to find the external forces, e.g., X3, Y3, which will produce this deformed 

1 2

 4 5 6 

X3

 Y3 
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state and be in equilibrium - and we want to do this without considering equilib-

rium explicitly! 

We start with equilibrium17: 

[X] = [A] [f]

and take a totally unmotivated step, multiplying both sides of this equation by the trans­
pose of a column vector whose elements may be anything whatsoever; 

[u*]
T

[X] =[u*]
T

[A] [f] 

This arbitrary vector bears an asterisk to distinguish it from the vector of actual displace­
ment prescribed at the nodes. 

At this point, the elements of [u] could be any numbers we wish, e.g., the price of coffee in 
the 12 largest cities of the US (it has to have twelve elements because the expressions on 
both sides of the equilibrium equation are 12 by 1 matrices). But now we manipulate this 
relationship, taking the transpose of both sides and write 

[X]
T

[u*] = [f]T[A]T[u*] 

then consider the vector [u*] to be a vector of nodal displacements, any set of nodal dis­
placements that satisfies the compatibility requirements for the structure, i.e., 

[A]T[u*] = [δ*] 

So [δ*] is still arbitrary, because [u*] is quite arbitrary - we can envision many 

different sets of member deformations. 

With this, our equilibrium equations, pre-multiplied by our arbitrary vector 

becomes 

[X]
T

[u*] = [f]T[δ*] or [u*]
T

 [X] =[δ*]
T

[f] 

(Note: The dimensions of the quantity on the left hand side of this last equation 

are displacement times force, or work. The dimensions of the product on the right 

hand side must be the same). 

Now we choose [u*] in a special way; we take it to represent a unit, virtual dis-

placement associated with a single degree of freedom, all other displacements 

zero. For example, we take 

[u*]T  = [ 0  0  0  0  0  1  0  0......] 

a unit displacement in the vertical direction at node 3 in the direction of Y3. 

Carrying out the product [u*]T [X] in the equation above, we obtain just the 

external force component associated with the same degree of freedom, Y3 i.e., 

Y3 = [δ*]
T

[f] 

17. We allow the system to be indeterminate as indicated in the figure. 
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We can cast this last equation into terms of member deformations (and member 

stiffness) and write: 

Y3 = [δ*]
T

 [kdiag][δ] 

And that is our special method for determining external forces of a statically 

determinate (or indeterminate) truss when all displacements are prescribed. It 

requires, first, solving compatibility for the “actual” member deformations [δ] 

given the “actual” prescribed displacements. We then solve another compatibility 

problem - one in which we apply a unit, or “dummy” displacement at the node we 

seek a to determine an applied force component and in the direction of that force 

component. With the “dummy” member deformations determined from compati-

bility, we carry out the matrix multiplication of the last equation and there we 

have it. 

We emphasize the difference between the two deformation vectors appearing in 

this equation; [δ] in plain font, is the vector of actual member deformations in the 

structure given the actual prescribed nodal displacements. [δ*] starred, on the 

other hand, is some, originally arbitrary virtual deformation vector which satisfies 

compatibility - compatibility solution for member deformations corresponding to 

a unit displacement in the vertical direction at node 3. 

We emphasize that our method does not require that we explicitly write out and 

solve the equilibrium equations for the system. We must, instead, compute com-

patible member deformations several times over. 

A Generalization 

We think of applying Displacement Method #1 at each degree of freedom in 

turn, and summarize all the relationships obtained for the required applied forces 

in one matrix equation. We do this by choosing 

1 0 ..... 0 0 

0 1 ..... 0 0T 
* = = u ..... ..... ..... ..... ..... I 12 x 12 

0 0 ..... 1 0 

0 0 ..... 0 1 

where each row represents a unit displacement in the direction of the “rowth” degree of 
freedom. 

The corresponding member deformations [δ*] now takes the form of a 11 x 12 

matrix whose “jth”column entries are the deformations engendered by the unit dis-

placement of the “ith” row above. (Note there are 11 members, hence 11 deforma-

tions and member forces). 

We still have

 [u*]
T

 [X] =[δ*]
T

[f] where [δ*]
T

 = [u*]
T

 [A] 
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but now [u*]T   is a 12 by 12 matrix, in fact the identity matrix.  So we can write:

 [X] =[δ*]
T

[f] 

- an expression for all the required applied forces, noting that the matrix [δ*]T is 12 by 11. 

Some further manipulation takes us back to the matrix displacement analysis 

results of the last section. Eliminating [δ*]
T 

via the second equation on the line 

above, and setting [u*] to the identity matrix, we have  [X] = [A][f] 

which we recognize as the equilibrium requirement. (But remember, in this world of pre­
scribed displacements, analysts look upon this relationship as foreign; compatibility is 
their forte). We replace the real member forces in terms of the real member deformations, 
then, in turn, the real member deformations in terms of the prescribed and actual displace­
ments and obtain 

[X] = [A][kdiag][A]T[u] of [X] = [K][u] 
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Design Exercise 5.1
You are a project manager for Bechtel with responsibility for the design and

construction of a bridge to replace a decaying truss structure at the Alewife MBTA

station in North Cambridge. Figure 1 shows a sketch of the current structure and

Figure 2 a plan view of the site. The bridge, currently four lanes, is a major link in

Route 2 which carries traffic in and out of Boston from the west. Because the

bridge is in such bad shape, no three-axle trucks are allowed access. Despite its

appearance, the bridge is part of a parkway system like Memorial Drive, Storrow

Drive, et. al., meant to ring the city of Boston with greenery as well as macadam

and concrete. In fact, the MDC, the Metropolitan District Commission, has a

strong voice in the reconstruction project and they very much would like to stress

the parkway dimension of the project. In this they must work with the DPW, the

Department of Public Works. The DPW is the agency that must negotiate with the

Federal Government for funds to help carry through the project. Other interested

parties in the design are the immediate neighborhoods of Cambridge, Belmont,

and Arlington; the environmental groups interested in preserving the neighboring

wetlands. (Osprey and heron have been seen nearby.) Commuters, commercial

interests – the area has experienced rapid development – are also to be considered.

1.1 Make a list of questions of things you might need to know in order to do your
job.

1.2 Make a list of questions of things you might need to know to enable you to
decide between proposing a four-lane bridge or a six-lane bridge.

1.3 Estimate the “worst-case” loads a four lane bridge might experience. Include
“dead weight loading” as well as “live” loads.

1.4 With this loading:

a)  sketch the shear-force and bending-moment diagram for a single span.

b)   for a statically determinate truss design of your making, estimate the
member loads by sectioning one bay, then another...

c) rough out the sizes of the major structural elements of your design.

.

336ft
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CONSERVATION COMMISSION FRUSTRATED AT ALEWIFE PLAN 
(October 4, 1990, Belmont Citizen-Herald) by Dixie Sipher Yonkers, Citizen-

Herald correspondent18 

Opponents of the planned $60 to $70 million Alewife Brook Parkway recon-

struction can only hope the federal funding falls through or the state Legislature 

steps in at the eleventh hours with a new plan. Following a presentation by a Met-

ropolitan District Commission planner on the Alewife Development proposal 

Tuesday night, the Belmont Conservation Commission expressed frustration over 

an approval process that appears to railroad a project of questionable benefit and 

uncertain impact, regardless of communities’ concerns and requests. The Alewife 

project would widen Route 2 and redesign the truss bridge, access roads and 

access ramps on Route 2 near the Belmont-Arlington-Cambridge border. It also 

would extend Belmont’s Brook Parkway significantly. Alewife Basin planner John 

Krajovick told the commission that MDC has grave concerns about the proposed 

transportation project and that, funding issues aside, it might be impossible to pre-

vent the Massachusetts Department of Public Works’ “preferred alternative” from 

being implemented. According to Krajovick, the MDC’s concerns center around 

the loss of open space that will accompany the project, specifically the land along 

the eastern bank of Yates pond, the strip abutting the existing parkway between 

Concord Avenue and Route 2, the wetlands along the railroad right-of-way near 

the existing interim access road, and that surrounding the Jerry’s pool site. “Our 

goal is to reclaim parkways to the original concept of them,” said Krajovick. “It 

was Charles Elliot’s vision to create a metropolitan park system – a kind of 

museum of unique open spaces...and use the parkways to connect them as linear 

parks.” “The world has changed. They are no longer for pleasure vehicles only, 

but parkways, we feel, are a really important way to help to control growth and 

maintain neighborhood standards,” he added. “We would like to see the character 

of this more similar to Memorial Drive and Storrow Drive as opposed to an 

expressway like Route 2." Krajovick outlined the MDC’s further concerns with 

the project, citing its likely visual, physical, noise, and environmental impacts on 

surrounding neighborhoods. Projected to cost $60-$70 million, he said, the “pre-

ferred alternative” will also hurt a sensitive wetland area, the Alewife Reserva-

tion, in return for minimal traffic improvements. In spite of these concerns, 

Krajovick reported that the project is nearing a stage at which it becomes very dif-

ficult to prevent implementation. The Final Environmental impact Statement is 

expected to be submitted to the Federal Highway Department within a month. The 

same document will be used as the final report the state’s Executive Office of 

Environmental Affairs. EOEA Secretary John DeVillars cannot stop the project 

once he receives that report. He can call for mitigating measures only. Krajovick 

noted a bill currently before the state Legislature’s Transportation Committee 

could prohibit the project from going forward as presently designed. He took no 

position on that bill. Conservation Commission members, however, voiced doubts 

18. Reprinted with permission of Harte-Hanks Community Newspapers, Waltham, MA 
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on the likelihood a passage in the face of the fiscal crisis and state elections that 

loom before legislators. In addition, Krajovick said that state budget cuts are 

expected to result in layoffs for nearly 600 of the MDC’s staff of 1,000 workers, 

effectively decimating the agency. “Our hopes for a compromise solution may not 

happen,” he said. Discouraged by Krajovick’s dismal prognosis, Conservation 

Commission members expressed concern that there was nothing they could do to 

change the course of the project. The commission has been providing input on the 

project for 12 years with no results. In response to Krajovick’s presentation, Com-

mission member William Pisano called the need for updated impact studies, say-

ing, “We agree with you. What we want to see is a lot more data and a more 

accurate realization of what we’re playing ball with today.” Commending the way 

in which concerned residents of Arlington, Cambridge and Belmont have gotten 

involved in the project, however, Krajovick said their thinking as a neighborhood 

rather than individual towns is a positive thing that has come from the project. 

Building on that team spirit, he said, the communities can raise their voice 

through formation of a Friends group and work toward the development of a mas-

ter plan or restoration plan for the whole Alewife reservation area. 

BRIDGE MEETING HIGHLIGHTS ISSUES
 Belmont Citizen-Herald September 26, 1991 by Alin Kocharians, Citizen-

Herald staff 

Some 50 residents turnout out Tuesday night at Winn Brook School to hear a 

presentation by the state Metropolitan District Commission on the Alewife Brook 

Parkway Truss Bridge. MDC representatives previewed their Truss Bridge renova-

tion and Parkway restoration plans. The Parkway segment affected is in Cam-

bridge, between the Concord Avenue rotary and Rindge Avenue. Plans for the 

two-year project, MDC officials hope, will be completed by early 1992, with con-

struction following in the spring of that year. Julia O’Brien, MDC’s director of 

planning, said that the $12 million necessary for the project will be provided by 

the Legislature and federal grants. Once the bridge renovation is completed, the 

truck ban on it will be lifted, hopefully reducing truck traffic in Belmont. The ren-

ovation plans are 75 percent complete, according to John Krajovic, the MDC plan-

ner in charge of the project. The MDC is also visiting with Arlington and 

Cambridge residents, asking for input on the project’s non-technical aspects. Res-

idents and MDC representatives exchanged compliments in the first hour, but as 

the meeting wore on, the topics of cosmetic versus practical and local versus 

regional issues proved divisive. One Belmont resident summed up what appeared 

to be a common misgiving in town. “I don’t want to cast stones, because it is a 

nice plan,” said John Beaty of Pleasant Street, “but it doesn’t solve the overall 

problem. I wish that I were seeing not just MDC here. There were two competing 

plans. It is the (State Department of Public Works’) charter to solve the overall 

region’s problem. I see those two as being in conflict.” Beaty said that the DPW 

plan was presented two years ago to residents, when officials had said that the 

plan was 60 percent complete. Stanley Zdonik of Arlington agreed. “I am 

impressed with the MDC presentation, but what bothers me is, are you going to 
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improve on the traffic flow?” he said. “You have got one bottleneck at one end, 

and another at the other.” He said that the Concord Avenue and Route 2 rotaries at 

either end of the bridge should have traffic signals added, or be removed alto-

gether. Krajovic replied that according to what the MDC’s traffic engineer had 

told him, “historically, signalizing small rotaries actually backs up traffic even 

more.” Belmont Traffic Advisory Committee member Marilyn Adams took issue 

with the decision not to add signals to the rotaries, and asked to see the study that 

produced this recommendation. Adams was also concerned with a “spill off” of 

traffic from the construction. “I can’t guarantee people won’t seek out other 

routes,” including Belmont, O’Brien said. However, she added, she did not expect 

the impact to be very great, as the Parkway would still be open during construc-

tion. “We will make really a strong effort for a traffic mitigation” plan to be nego-

tiated with the town, she said. Selectman Anne Paulsen also asked about the 

impact of traffic on the town. MDC representatives said that various traffic sur-

veys were being conducted to find a way to relieve the traffic load on Belmont. 

Krajovic said that traffic problems in Belmont were regional questions, to be han-

dled by local town officials, a point with which Paulsen disagreed. Paulsen said 

that she would prefer a more comprehensive plan for the region. Aside from the 

reconstruction of the Truss Bridge, she said, “I think the point of the people of 

Belmont is that...we want improvement in the roadway, so that we are relieved of 

some of the traffic.” According to the plans, the new bridge will have four 11-foot 

lanes, one foot wider than the current width for each lane. There will also be a 

broader sidewalk, and many new trees planted both along the road and at the rota-

ries. There will be pedestrian passes over the road, and a median strip with green-

ery. The bridge will be made flat, so that motorists will have better visibility, 

engineering consultant Ray Oro said. It will be constructed in portions, so that two 

lanes will always be able to carry traffic, he said. According to Blair Hines of the 

landscaping firm of Halvorson Company, Inc., by the end of the project, “Alewife 

Brook Parkways will end up looking like Memorial Drive.” All the talk about 

landscaping, Paulsen suggested with irony, “certainly calms the crowd.” 
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5.4 Problems 

5.1 If the springs are all of equal stiffness, k, the bar ABC rigid, and a couple 

Mo is applied to the system, show that the forces in the springs are 

FA = -(5/7)Mo/H FB=(1/7)Mo/H FC=(4/7)Mo/H 

H 
H/2 

A B C 

Mo 

5.2 The problem show within the box was worked incorrectly by an MIT 

student on an exam. The student’s work is shown immediately below the problem 

statement, again with the box. 

i) Find and describe the error. 

ii) Re-formulate the problem—that is, construct a set of equations from 
which you might obtain valid estimates for the forces in the two supporting 
members, BD and CD. 

A rigid 
The rigid beam is weightless 

L 

L/2 

W 
L/2 

A B C 

D 

Fc 
Fb 

Ra 

W 

θ45 

θ

1 
2 

5
1/2 

1 R 
a
 - F 

b 
2 2 - Fc 2/ 

5 
= 0 

2 - W + Fb 2 2 + Fc / 5 =0 

3 Fb 2 2 L/2 + Fc L/ 5 - WL =0 

-W + Fb 2 4 + Fc/ 5 
= 0 

. Fb =0 and Fc = 5 W  ans.! 

beam is supported at the three pins, A,B, and C by the wall and the two elastic 
members of common material and identical cross-section.  

but carries an end load W.  Find the forces in the members BD and CD in terms of W. 

=arctan(1/2) 

rewrite 3  

subtract 2  
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5.3 A rigid beam is pinned supported at P 

its left end and at midspan and the right end 
L

by two springs, each of stiffness k (force/ L/2 

displacement). The beam supports a weight 

P at mid span. k 

i) Construct a compatibility condition, 

relating the displacements of the springs to 

the rotation of the rigid beam. 

ii) Draw an isolation and write out the consequences of force and moment 

equilibrium 

iii) Using the force/deformation relations for the linear springs, express equi-

librium in terms of the angle of rotation of the beam. 

iv) Solve for the rotation, then for the forces of reaction at the three support 

points. 

v) Sketch the shear force and bending moment diagram. 

5.4 For the rigid stone block supported by three 

springs of Exercise 5.1, determine the A B C 
displacements of and forces in the springs (in terms 

of W) if the spring at C is very, very stiff relative to 

the springs (of equal stiffness) at A and B. 

W 

5.5 The stiffness matrix for the truss structure 

shown below left is 

2 AE 
L 

-
60cos2 0 

0 sin2 

u 

v 

X 

Y 
= 

60  

X, u 

60o 

L 

Y,v Y,v 

X, u 

60o30o 

What if a third member, of the same material and cross-sectional area, is added 

to the structure to stiffen it up; how does the stiffness matrix change? 
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5.6  Without writing down any equations, estimate the maximum member 

tensile load within the truss structure shown below. Which member carries this 

load? 

P 

4/5 L 

L 

5.7  The truss show below is loaded at midspan with a weight P= 60 lbs. The 

member lengths and cross sectional areas are given in the figure. The members are 

all made of steel. 

A

A

Atop  = 0.01227 in2 

diag  = 1.09 Atop 

bot  = 2.35 Atop 

3  5 -2P 7 -P 9 

1 2 4 6 8 

Atop

H = 4.0” 

L=2H

 P = 60 lbs 
E = 29.0 E+06 psi 

2 
P 
2 
- 2 

P 
2 
-–Adiag 

P/2Abot 3P/2 

2 
P 
2 
- 2– 

P 
2 
-

a) Verify that the forces in the members are as indicated.

b) Using Trussworks, determine the vertical deflections at nodes 2 and 4.


5.8 All members of the truss structure Y1 

the stiffness matrix. 

 AE

 H 


X1 

H 

v1 
u1 

60 60
45 45? ? 

? ? 

u1 

v1 

X1 

Y 1 

= 

shown at the left are of the same material 

(Elastic modulus E), and have the same 

cross sectional area. Fill in the elements of 
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5.9 For the three problems 1a, 

1b,and1c, state whether the problem 

posed is statically determinate or 

statically indeterminate. In this, assume 

all information regarding the geometry of 

the structure is given as well as values 

P2 

d b

e c 
a 

for the applied loads. 

1a) Determine the force in member 
P1ab. 

1b) Determine the force in member bd 
1c) Determine the reactions at the wall. 

5.10 The simple truss structure shown is subjected to a horizontal force P, 

directed to the right. The members are made of the same material, of Young’s 

modulus E, and have the same cross-sectional area, A (for the first three 

questions). 

i) Find the force acting in each of the 

two members ab, bc, in terms of P. 

x 

P

L 
(3/5)L

a 

b

c 

y 

ii) Find the extension, (contraction), 

of each of the two members. 

iii) Assuming small displacements and 

rotations, sketch the direction of the dis-

placement vector of node b. 

iv) Sketch the direction of the dis-

placement vector if the cross-sectional 
(4/5)L

area of ab is much greater than that of bc. 

v) Sketch the direction of the displacement vector if the cross-sectional area of 

ab is much less than that of bc. 

k1 

P 5.11 The rigid beam is pinned at the 

left end and supported also by two L/8 L/8 
linear springs as shown. 

What do the equilibrium requirements 

tell you about the forces in the spring
k2 and their relation to P and how they 

depend upon dimensions shown? 

L 

Assuming small deflections (let the beam rotate cw a small angle θ), what does 

compatibility of deformation tell you about the relationships among the contrac-

tions of the spring, the angle θ? 

What do the constitutive equations tell you about the relations between the forces 

in the springs and their respective deflections? 

Express the spring forces as a function of P if k2 = (1/4)k1 
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5.12  A rigid board carries a uniformly distributed weight, W/L. The board 

rests upon five, equally spaced linear springs, but each of a different stiffness. 

a a a ak1  k2  k3  k4  k5 

L = 4a 

Show that the equations of equilibrium for the isolated, rigid board can be put 

in the form 

W =A ⋅ F 
0 

where [A} is a 2 by 5  matrix and [F] is a 5 by 1 column matrix of the compressive forces in 
the five springs. Write out the elements of [A}. 

If the springs are linear, but each of a different stiffness, show that the matrix 

form of the force/deformation relations take the form 

=F kdiag ⋅ δ 

where the [δ] is a the column matrix of the spring deformations, taken as positive in com­
pression, and the k matrix is diagonal. 

Show that, if the beam is rigid and deformations are small then, in order for the 

spring deformations to be compatible, one with another, five equations must be 

satisfied (for small deformations). Letting u be the vertical displacement of the 

midpoint of the rigid beam - positive downward - and θ its counter-clockwise 

rotation, write out the elements of [A]T - the matrix relating the deformations of 

the spring to u and θ. Then show that the equations of equilibrium in terms of dis-

placement take the form: 

T 
A ⋅ kdiag ⋅ A ⋅	 u = W where [A]T  is the transpose of [A].


θ 0
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5.13 A rigid beam is constrained to 

∆ h
60o 

P 
move vertically without rotation. It 

is supported by a simple truss 

structure as shown in the figure. The 

truss members are made of 

aluminum (E = 10.0 E+06 psi; = 70 
GPa). Their cross sectional area is 

0.1 in2 = 0.0645E-03 m2 The system 

is bears a concentrated load P at mid 

span. The height of the platform 

above ground is h =36 in = 0.91 m. 

Let the vertical displacement be ∆ . Determine the value of the stiffness of the system, the 
value for K in the relationship  P = K ∆ 

What is the vertical displacement if  P = 5,000 lb = 22,250 N 

What is the compressive stress in the members at this load? 

5.14 A rigid beam rests on an elastic foundation. The distributed stiffness of 

the foundation is defined by the parameter β ; the units of β are force per vertical 

displacement per length of beam. (If the beam were to displace downward a 

distance uL without rotating, the total vertical force resisting this displacement 

would be just β *uL*L). A heavy weight P rests atop the beam at a distance a to the 

right of center. The beam has negligible weight relative to P. 

Letting the vertical displacement at the left 
end of the beam be uL, and the rotation about 
this same point be θ , (clockwise positive), 
show that the requirements of force and 
moment equilibrium, applied to an isolation β 
of the beam, give the following two equations u

θ

 P

a 

L L/2 L/2 
for the displacement and rotation: 

(β L) ⋅ uL +  β L2 
 θ ⋅ = P 2  

---------  β L3 
 θ ⋅ = P a  + L ⁄ 2) β L2 

 ⋅ uL + --------- ⋅ ( 2   3  

Let Λ = P/(β L2), α = a/L, and z = uL/L so to put these in non dimensional form. Then 
solve for the non-dimensional displacements z and θ .Explore the solution for special 
cases, e.g., a = 0, -L/2, +L/2. What form do the equilibrium equations take if you mea­
sure the vertical displacement at the center of the beam? (Let this displacement be uo). 




