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Stress 
We have talked about internal forces, distributed them uniformly over an area and 

they became a normal stress acting perpendicular to some internal surface at a 

point, or a shear stress acting tangentially, in plane, at the point. Up to now, the 

choice of planes upon which these stress components act, their orientation within 

a solid, was dictated by the geometry of the solid and the nature of the loading. 

We have said nothing about how these stress components might change if we 

looked at a set of planes of another orientation at the point. And up to now, we 

have said little about how these normal and shear stresses might vary with posi-

tion throughout a solid.1 

Now we consider a more general situation, namely an arbitrarily shaped solid 

which may be subjected to all sorts of externally applied loads - distributed or 

concentrated forces and moments. We are going to lift our gaze up from the 

world of crude structural elements such as truss bars in tension, shafts in torsion, 

or beams in bending to view these “solids” from a more abstract perspective. They 

all become special cases of a more general stuff we call a solid continuum. 

Likewise, we develop a more general and more abstract representation of inter-

nal forces, moving beyond the notions of shear force, internal torque, uni-axial 

tension or compression and internal bending moment. Indeed, we have already 

done so in our representation of the internal force in a truss element as a normal 

stress, in our representation of torque in a thin-walled, circular shaft as the result-

ant of a uniformly distributed shear stress, in our representation of internal forces 

in a cylinder under internal pressure as a hoop stress (and as an axial stress). We 

want to develop our vocabulary and vision in order to speak intelligently about 

stress in its most general form. 

We address two questions: 

•	 How do the normal and shear components of stress acting on a plane at a 
given point change as we change the orientation of the plane at the point. 

•	 How might stresses vary from one point to another throughout a contin­
uum; 

The first bullet concerns the transformation of components of stress at a point; 
the second introduces the notion of stress field.  We take them in turn. 

1.	 The beam is the one exception. There we explored how different normal stress distributions over a rectangu-
lar cross-section could be equivalent to a bending moment and zero resultant force. 
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4.1  Stress: The Creature and its Components 

We first address what we need to know to fully define “stress at a point” in a 

solid continuum. We will see that the stress at a point in a solid continuum is 

defined by its scalar components. Just as a vector quantity, say the velocity of a 

projectile, is defined by its three scalar components, we will see that the stress at 

a point in a solid continuum is defined by its nine scalar components. 

Now you are probably quite familiar with vector quantities - quantities that 

have three scalar components. But you probably have not encountered a quantity 

like stress that require more than three scalar values to fix its value at a point. 

This is a new kind of animal in our menagerie of variables; think of it as a new 

species, a new creature in our zoo. But don’t let the number nine trouble you. It 

will lead to some algebraic complexity, compared to what we know how to do 

with vectors, but we will find that stress, a second order tensor, behaves as well as 

any vector we are familiar with. 

The figure below is meant to illustrate the more general, indeed, the most gen-

eral state of stress at a point. It requires some explanation: 
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The odd looking structural element, fixed to the ground at bottom and to the 

left, and carrying what appears to be a uniformly distributed load over a portion of 

its bottom and a concentrated load on its top, is meant to symbolize an arbitrarily 

loaded, arbitrarily constrained, arbitrarily shaped solid continuum. It could be a 

beam, a truss, a thin-walled cylinder though it looks more like a potato — which 

too is a solid continuum. At any arbitrarily chosen point inside this object we can 

ask about the value of the stress at the point, say the point P. But what do we mean 

by “value”; value of what at that point? 

Think about the same question applied to a vector quantity: What do we mean 

when we say we know the value of the velocity of a projectile at a point in its tra-

jectory? We mean we know its magnitude - its “speed” a scalar - and its direction. 

Direction is fully specified if we know two more scalar quantities, e.g., the direc-

tion the vector makes with respect to the axes as measured by the cosine of the 

angles it makes with each axis. More simply, we have fully defined the velocity at
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a point if we specify its three scalar components with respect to some reference 

coordinate frame - say its x, y and z components. 

Now how do we know this fully defines the vector quantity? We take as our 

criterion that anyone, anyone in the world (of mathematical physicists and engi-

neers), would agree that they have in hand the same thing, no matter what coordi-

nate frame they favor, no matter how they viewed the motion of the projectile. 

(We do insist that they are not displacing or rotating relative to one another, i.e., 

they all reside in the same inertial frame). This is assured if, after transforming the 

scalar components defined with respect to one reference frame to another, we 

obtain values for the components any other observer sees. 

It is then the equations which transform the values of the components of the 

vector from one frame to another which define what a vector is. This is like defin-

ing a thing by what it does, e.g., “you are what you eat”, a behaviorists perspec-

tive - which is really all that matters in mathematical physics and in engineering. 

Reid: Hey Katie: what do you think of all this talk about components? Isn’t 
he going off the deep end here? 

Katie: What do you mean, “...off the deep end”? 

Reid: I mean why don’t we stick with the stuff we were doing about beams 
and trusses? I mean that is the useful stuff. This general, abstract continuum 
business does nothing for me. 

Katie: There must be a reason, Reid, why he is doing this. And besides, I 
think it is interesting; I mean have you ever thought about what makes a vec­
tor a vector? 

Reid: I know what a vector is; I know about force and velocity; I know they 
have direction as well as a magnitude. So big deal. He is maybe just trying 
to snow us with all this talk about transformations. 

Katie: But the point is what makes force and velocity the same thing? 

Reid: Their not the same thing! 

Katie: He is saying they are - at a more abstract, general level. Like....like 
robins and bluebirds are both birds. 

Reid: And so stress is like tigers, is that it? 

Katie: Yeah, yeah - he said a new animal in the zoo. 

Reid: Huh... pass me the peanuts, will you? 

We envision the components of stress as coming in sets of three: One set acts 

upon what we call an x plane, another upon a y plane, a third set upon a z plane. 
Which plane is which is defined by its normal: An  x plane has its normal in the x 
direction, etc. Each set includes three scalar components, one normal stress com-
ponent acting perpendicular to its reference plane, with its direction along one 
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z

coordinate axis, and two shear stress components acting in plane in the direction 

of the other two coordinate axes. 

That’s a grand total of nine stress components to 
define the stress at a point. To fully define the 
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stress field throughout a continuum you need to 

specify how these nine scalar components. Fortu-

nately, equilibrium requirements applied to a differ-

ential element of the continuum, what we will call a 

“micro-equilibrium” consideration, will reduce the 

number of independent stress components at a point 

from nine to six. We will find that the shear stress 

component σxy acting on the x face must equal its 

neighbor around the corner σyx acting on the y face 

and that σ  = σ  and σxz = σzx accordingly. 

Fortunately too, in most of the engineering structures you will encounter, diag-

nose or design, only two or three of these now six components will matter, that is, 

will be significant. Often variations of the stress components in one, or more, of 

the three coordinate directions may be uniform. But perhaps the most important 

simplification is a simplification in modeling, made at the outset of our encounter. 

One particularly useful model, applicable to many structural elements is called 

Plane Stress and, as you might infer from the label alone, it restricts our attention 

to variations of stress in two dimensions. 

zy yz

Plane Stress 

If we assume our continuum has the form of a thin plate of uniform thickness but 

of arbitrary closed contour in the x-y plane, our previous arbitrarily loaded, arbi-

trarily constrained continuum (we don’t show these again) takes the planar form 

below. 
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Because the plate is thin in the z direction, (h/L << 1 ) we will assume that 

variations of the stress components with z is uniform or, in other words, our stress 

components will be at most functions of x and y. We also take it that the z bound-
ary planes are unloaded, stress-free. These two assumptions together imply that
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σ

the set of three “z” stress components that act upon any arbitrarily located z plane 

within the interior must also vanish. We will also take advantage of the micro-

equilibrium consequences, yet to be explored but noted previously, and set σyz and 

xz to zero. Our state of stress at a point is then as it is shown on the exploded view 

of the point - the block in the middle of the figure - and again from the point of 

view of looking normal to a z plane at the far right. This special model is called 

Plane Stress. 

A Word about Sign Convention: 

σ

The figure at the far right seems to include 

more stress components than necessary; 

after all, if, in modeling, we eliminate the 

stress components acting on a z face and 

yz and σxz as well, that should leave, at 

most, four components acting on the x and 

y faces. Yet there appear to be eight in the 

figure. No, there are only at most four 

components; we must learn to read the fig-

ure. 
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y stress at a point, the point A. The figure at 

σ
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yx the top is meant to indicated that we are 

xy 

looking at four faces or planes simulta-
σx neously. When we look at the x face from 

the right we are looking at theσx σxy 

stress components on a positive x face — it  

yx σ has its outward normal in the positive xσ
y 

direction — and a positive normal stress, 

by convention, is directed in the positive x direction. A  positive shear stress com-
ponent, acting in plane, also acts, by convention, in a positive coordinate direc-
tion - in this case the positive y direction. 

On the positive y face, we follow the same convention; a positive σy acts on a 
positive y face in the positive y coordinate direction; a positive σyx acts on a posi-
tive y face in the positive x coordinate direction. 

We emphasize that we are looking at a point, point A, in these figures. More 

precisely we are looking at two mutually perpendicular planes intersecting at the 

point and from two vantage points in each case. We draw these two views of the 

two planes as four planes in order to more clearly illustrate our sign convention. 

But you ought to imagine the square having zero height and width: the σx acting to 

the left, in the  negative x direction, upon the negative x face at the left, with its 

outward normal pointing in the negative x direction is a positive component at the 

point, the equal and opposite reaction to the σx acting to the right, in the positive 
x direction, upon the positive x face at the right, with its outward normal pointing 
in the positive x direction. Both are positive as shown; both are the same quan-
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tity. So too the shear stress component σxy shown acting down, in the negative y 
direction, on the negative x face is the equal and opposite internal reaction to σxy 

shown acting up, in the positive y direction, on the positive x fac 
A general statement of our sign convention, which holds for all nine compo-

nents of stress, even in 3D, is as follows: 

A positive component of stress acts on a positive face in a positive coordi-
nate direction or on a negative face in a negative coordinate direction. 

Transformation of Components of Stress 

Before constructing the equations which fix how the components of stress 

transform in general, we consider a simple example of a bar suspended vertically 

and illustrate how components change when we change our reference frame at a 

point. In this example, we take the weight of the bar to be negligible relative to 

the weight suspended at its free end and explore how the normal and shear stress 

components at a point vary as we change the orientation of a plane. 

Exercise 4.1 

The solid column of rectangular cross section measuring a × b supports a 
weight W. Show that both a normal stress and a shear stress must act on any 
inclined interior face. Determine their respective values assuming that both 
are uniformly distributed over the area of the inclined face. Express your 
estimates in terms of the ratio (W/ab) and the angle φ. 

For equilibrium of the isolation of a section of 

b a 

Fn 

Ft 

φ 

φ 

φ 

the column shown at the right, a force equal to 

the suspended weight (we neglect the weight of 

the column itself) must act upward. We show an 

equivalent force system — or, if you like, its 

A
components consisting of two perpendicular 

φ forces, one directed normal to the inclined 

plane, the other with its line of action in the 

plane inclined at the angle φ. We have 

F = W ⋅ cos φ and Ft = W ⋅ sin φn 

Now if we assume these are distributed uni-

W W formly over the section, we can construct an 

estimate of the normal stress and the shear stress 

acting on the inclined face. But first we must establish the area of the inclined 

face Aφ. From the geometry of the figure we see that the length of the inclined 

plane is b/cosφ so the area is Aϕ = (ab) ⁄ ( cos φ) 

With this we write the normal and shear stress components as 
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W 2	 W 

n n   	 ------ sinσ = F ⁄ Aφ =   ⋅ cos φ and σt = Ft ⁄ Aφ =   ⋅ cos φ  φ  
ab	  ab 

These results clearly illustrate how the values for the normal and shear stress 

components of a force distributed over a plane inside of an object depends upon 

how you look at the point inside the object in the sense that the values of the shear 
and normal stresses at a point within a continuum depend upon the orientation 
of the plane you have chosen to view. 

Why would anyone want to look at some arbitrarily oriented plane in an object, 

seeking the normal and shear stresses acting on the plane? Why do we ask you to 

learn how to figure out what the stress components on such a plane might be? 

The answer goes as follows: One of our main concerns as a designer of struc-

tures is failure —fracture or excessive deformation of what we propose be built 

and fabricated. Now many kinds of failures initiate at a local, microscopic level. 

A minute imperfection at a point in a beam where the local stress is very high ini-

tiates fracture or plastic deformation, for example. Our quest then is to figure out 

where, at what points in a structural element, the normal and shear stress compo-

nents achieve their maximum values. But we have just seen how these values 

depend upon the way we look at a point, that is, upon the orientation of the plane 

we choose to inspect. To ensure we have found the maximum normal stress at a 

point for example, we would then have to inspect every possible orientation of a 

plane passing through the point.2 

This seems a formidable task. But before taking it on, we pose a prior ques-

tion: 

Exercise 4.2 

What do you need to know in order to determine the normal and shear 
stress components acting upon an arbitrarily oriented plane at a point in a 
fully three dimensional object? 

The answer is what we might anticipate from our original definition of six 

stress components for if we know these six scalar quantities3, the three normal 

stress components σx, σy, and σz, and the three shear stress components σxy, σyz, 

and σxz, then we can find the normal and shear stress components acting upon an 

arbitrarily oriented plane at the point. That is the answer to our need to know 

question. 

To show this, we derive a set of equations that will enable you to do this. But 

note: we take the six stress components relative to the three orthogonal, let’s call 

2.	 Much as we have done in the preceding exercise. Our analysis shows that the maximum normal stress acts on 

the horizontal plane, defined by φ =0. The maximum shear stress, on the other hand acts on a plane oriented 

at 45o to the horizontal. The factor cosφ sin φ has a maximum at φ = 45o. 

xz, zy3.	 We take advantage of moment equilibrium and take σ yx = σ xy, σzx = σ and σ = σyz. 
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them, x,y,z planes as given, as known quantities. Furthermore, again we restrict 

our attention to two dimensions - the case of Plane Stress. That is we say that the 

components of stress acting on one of the planes at the point - we take the z planes 

- are zero. This is a good approximation for certain objects — those which are thin 
in the z direction relative to structural element’s dimensions in the x-y plane. It 

also, makes our derivation a bit less tedious, though there is nothing conceptual 

complex about carrying it through for three dimensions, once we have it for two. 

In two dimensions we can draw a simpler picture of the state of stress at a 
point. We are not talking differential element here but of stress at a point. The fig-

ure below shows an arbitrarily oriented plane, defined by its normal, the x’ axis, 

inclined at an angle φ to the horizontal. In this two dimensional state of stress we 
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have but three scalar components to specify to fully define the state of stress at a 

point: σx, σy and σyx = σxy. Knowing these three numbers, we can determine the 

normal and shear stress components acting on any plane defined by the orientation 

φ as follows. 

Consider equilibrium of the shaded wedge shown. Here we let Aφ designate the 

area of the inclined face at a point, A and A the areas of the x face with its out-
x y 

ward normal pointing in the -x direction and of the y face with its outward normal 

pointing in the -y direction respectively. In this we take a unit depth into the paper. 

We have 

A = Aϕ ⋅ cos φ and Ay = Aφ ⋅ sin φx 

That takes care of the relative areas. Now for force equilibrium, in the x and y 
directions we must have: 

– σ ⋅ A – σ ⋅ A + (σ' ⋅ cos φ – σ' xy ⋅ sin φ) ⋅ Aφ = 0x x xy y x 

and 

- – σ ⋅ A – σ ⋅ A + (σ' ⋅ sin φ + σ' xy ⋅ cos φ) ⋅ Aφ = 0xy x y y x 

If we multiply the first by cosφ, the second by sinφ and add the two we can eliminate σ’ . 
We obtain 

xy 

σ' Aφ–σ cos φA – σxy cos φA – σ sin φA –σ sin φA = 0x x x y xy x y y 
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which, upon expressing the areas of the x,y faces in terms of the area of the inclined face, 
can be written (noting Aφ becomes a common factor). 

2σ' = σ cos φ2 + σ sin φ + 2σ sin φcos φx x y xy 

In much the same way, multiplying the first equilibrium equation by sinφ, the second by 
cosφ but subtracting rather than adding you will obtain eventually 

2σ' = (σy –σ ) sin φcos φ + σxy( cos φ2 – sin φ )xy x 

We deduce the normal stress component acting on the y’ face of this rotated 

frame by replacing φ in our equation for σ’ by φ  + π/2. We obtain in this way: 
x 

2σ' = σ cos φ2 + σ sin φ –2σ sin φcos φy y x xy 

The three transformation equations for the three components of stress at a 

point can be expressed, using the double angle formula for the cosine and the sine, 

as 

σ' x 

σx σy+( ) 
2 

-
σx σy –( ) 

2 
- 2φcos⋅ σ xy 2φsin+ += 

σ' y 

σx σy+( ) 
2 

-
σx σy –( ) 

2 
- 2φcos⋅– σxy – 2φsin= 

σ' xy 

σx σy –( ) 
2 

-– 2φsin⋅ σ xy 2φcos+= 

Here we have the equations to do what we said we could do. Think of the set as 

a machine: You input the three components of stress at a point defined relative to 

an x-y coordinate frame, then give me the angle φ, and I will crank out -- not only 

the normal and shear stress components acting on the face with its outward normal 

inclined at the angle φ with respect to the x axis, but the normal stress on the y’ 
face as well. In fact I could draw a square tilted at an angle φ to the horizontal 

and show the stress components  σ’ x,  σ’ y and σ’xyacting on the x’ and y’ faces. 

To show the utility of these relationships consider the following scenario: 

Exercise 4.3 

An solid circular cylinder made of some brittle material is subject to pure 
torsion —a torque Mt. If we assume that a shear stress τ(r) acts within the 
cylinder, distributed over any cross section, varying with r according to 

τ( )  = c rn r ⋅ 
where n is a positive integer, then the maximum value of τ, will occur at the 
outer radius of the shaft. 
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But is this the maximum value? That is, while certainly rn is maximum at the 

outermost radius, r=R, it may very well be that the maximum shear stress acts on 

some other plane at that point in the cylinder. 

Show that the maximum shear stress is indeed that which acts on a plane nor-

mal to the axis of the cylinder at a point on the surface of the shaft. 

Show too, that the maximum normal stress in the cylinder acts 

•  at a point on the surface of the cylinder 

•  on a plane whose normal is inclined 45o to the x axis and its value is 
σ' = τ R( )x max 

We put to use our machinery for 
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computing the stress components 

acting upon an arbitrarily oriented 

plane at a point. Our initial set of 

stress components for this particu-

lar state of stress is 

σ = 0x 

σ = 0y 

and


σ = τ R
( )xy 

defined relative to the x-y coordinate 
frame shown top right. Our equations 
defining the transformation of compo­
nents of stress at the point take the sim­
pler form 

σ' = τ ⋅ sin 2φx 

σ' = –τ ⋅ sin 2φ Mt y 

σ' = τ ⋅ cos 2φxy 

To find the maximum value for the shear stress component with respect to the 

plane defined by φ, we set the derivative of σ’ to zero. Since there are no “bound-
xy 

aries” on  φ  to worry about, this ought to suffice. 

So, for a maximum, we must have 

dσ' xy = –2τ ⋅ sin 2φ = 0
dφ 
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Now there are many values of φ which satisfy this requirement, φ=0, φ=π/2, ...... But all 
of these roots just give the orientation of the of our initial two mutually perpendicular, x-y 
planes. Hence the maximum shear stress within the shaft is just τ at r=R. 

To find the extreme, including maximum, values for the normal stress, σ’ we 
x 

proceed in much the same way; differentiating our expression above for σ’ withx 

respect to φ yields 

dσ' x = 2τ ⋅ cos 2φ = 0 (EQ 1)
dφ 

Again there is a string of values of φ, each of which satisfies this requirement. 

We have 2φ = π/2, 3π/2 ....... or φ  = π/4, 3π/4 

At φ = π/4 (= 45o), the value of the normal stress is σ’ = +  τ sin2φ =  τ.  So 
x 

the maximum normal stress acting at the point on the surface is equal in magni-

tude to the maximum shear stress component. 

Note too that our transformation relations y 
say that the normal stress component acting σxy 

original
     state of stress 

on the y’ plane, with φ=π/4 is negative and 

equal in magnitude to τ. Finally we find that σ
σthe shear stress acting on the x’-y’ planes is 

xy 

xy=+τ(R) 

zero! We illustrate the state of stress at the 

point relative to the x’-y’ planes below right. x
σxy

Backing out of the woods in order to see 

the trees, we claim that if our cylinder is σ’ xy = 0 
made of a brittle material, it will fracture σ’ x = +τ (R)y 

φ 

x’ 

σ’ =  −τ (R) 
across the plane upon which the maximum 

tensile stress acts. If you go now and take a 

piece of chalk and subject it to a torque until = 45o 

it breaks, you should see a fracture plane in 
xthe form of a helical surface inclined at 45 

degrees to the axis of the cylinder. Check it 

out. 

Of course it’s not enough to know the orientation of the fracture plane when 

designing brittle shafts to carry torsion. We need to know the magnitude of the 
torque which will cause fracture. In other words we need to know how the shear 

stress does in fact vary throughout the cylinder. 

This remains an unanswered question. So too for the beam: How do the nor-

mal stress (and shear stress) components vary over a cross section of the beam? In 

a subsequent section, we explore how far we can go with equilibrium consider-

ation in responding. But, in the end, we will find that the problem remains stati-

cally indeterminate; we will have to go beyond the concept of stress and consider 

the deformation and displacement of points in the continuum. But first, a special 

technique for doing the transformation of components of stress at a point. “Mohr’s 
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Circle” is a graphical technique which, while offering no new information, does 

provide a different and useful perspective on our subject. 

Studying Mohr’s Circle is customarily the final act in this first stage of indoc-

trination into concept of stress. Your uninitiated colleagues may be able to master 

the idea of a truss member in tension or compression, a beam in bending, a shaft in 

torsion using their common sense knowledge of the world around them, but 

Mohr’s Circle will appear as a complete mystery, an unfathomable ritual of signs, 

circles, and greek symbols. Although it does not tell us anything new, over and 

above all that we have done up to this point in the chapter, once you’ve mastered 

the technique it will set you apart from the crowd and shape your very well being. 

It may also provide you with a useful aid to understanding the transformation of 

stress and strain at a point on occasion. 

Mohr’s Circle 

Our working up of the transformation relations for stress and our exploration 

of their implications for determining extreme values has required considerable 

mathematical manipulation. We turn now to a graphical rendering of these rela-

tionships. I will set out the rules for constructing the circle for a particular state of 

stress, show how to read the pattern, then comment about its legitimacy. I first 

repeat the transformation equations for a two-dimensional state of stress. 

σ' x 

σx σy+( ) 
2 

-
σx σy –( ) 

2 
- 2φcos⋅ σ xy 2φsin+ += 

σ' y 

σx σy+( ) 
2 

-
σx σy –( ) 

2 
- 2φcos⋅– σxy – 2φsin= 

σ' xy 

σx σy –( ) 
2 

-– 2φsin⋅ σ xy 2φcos+= 

σ
To construct Mohr’s Circle, given the state of stress σ x = 7,  σ xy= 4,  and 

y = 1 we proceed as follows: Note that I have dropped all pretense of reality in this 

choice of values for the components of stress. As we shall see, it is their relative magni-

tudes that is important to this geometric construction. Everything will scale by any com-

mon factor you please to apply. You could think of these as σx =7x103 KN/m2...etc., if you 

like. 
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•	 Lay out a horizontal axis and label it σ positive to the right. 

σ 

• Lay out an axis perpendicular to the above and label it σ  positive down 
xy

and σ  positive up4. 
yx

σ 

σyx 

σxy 

•	 Plot a point associated with the stress components acting on an x face at 
the coordinates (σ ,σ )=(7,4

down
). Label it x

face
, or x if you are cramped 

for space. 
x xy

σ 

σyx 

σxy 
x 

y 

σx 

σxy 

x 

4. WARNING:  Different authors and engineers use different conventions in constructing the Mohr’s circle. 
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•	 Plot a second point associated with the stress components acting on an y 
face at the coordinates (σ ,σ )= (1,4 ). Label it y

face
, or y if you are

y yx up
cramped for space. Connect the two points with a straight line. Note the 
order of the subscripts on the shear stress. 

σyx 

σxy 
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σy 

•	 Chanting “similar triangles”, note that the center of the line must neces­
sarily lie on the horizontal, σ axis since σ =σ , 4=4. Draw a circle with 
the line as a diagonal. 

xy yx
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4 

4 

σ 

(σx,σxy) 

(σy,σyx)σy 

2•	 Note that the radius of this circle is RMohr s = (σxy )2 + [(σ – σ ) ⁄ 2]x y 
which for the numbers we are using is just R = 5, and its center lies 

Mohr’s C  
at (σ +σ )/2 = 4.

x y

•	 To find the stress components acting on a plane whose normal is inclined 
at an angle of φ degrees, positive counterclockwise, to the x axis in the 
physical plane, rotate the diagonal 2φ in the Mohr’s Circle plane. We 
illustrate this for φ = 40o. Note that the shear stress on the new x’ face is 
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negative according to the convention we have chosen for our Mohr’s Cir-
cle.5 

σyx (σy,σyx) 

σxy 
x 

y 

y 

4 

4 

σ 

(σx,σxy) 

(σx ’,τxy’) 

(σy ’,σyx’) 
80o 

σx ’σxy ’ 

40o = φ 

•	 The stress components acting on the y’ face, at φ + π/2= 130o around in the 
physical plane are 2φ + π = 240o around in the Mohr’s Circle plane, just 
2φ around from the y face in the Mohr’s Circle plane. 

We establish the legitimacy of this graphical representation of the transforma-

tion equations for stress making the following observations: 

•	 The extreme values of the normal stress lie at the two intersections of the 
circle with the σ axis. The angle of rotation from the x

face
 to the principal 

plane I on the Mohr’s Circle is related to the stress components by the 
equation previously derived:

 tan2φ =2σ /(σ 
x 
-σ ).

xy y

σxy 
x 

y 

σ 
σIσII 

(σx +σy)/2 

R+(σx +σy)/2 

- R+(σx +σy)/2 
y 

σII 

σI 

φmax 2φmax 

5. WARNING, again: Other texts use other conventions. 
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•	  Note that on the principal planes the shear stress vanishes. 

•	  The values of the two principal stresses can be written in terms of the 
radius of the circle. 

2σI II  = [(σ + σy) ⁄ 2] ± (σ xy)2 + [(σ – σ ) ⁄ 2], x	 x y 

•	  The orientation of the planes upon which an extreme value for the shear 
stress acts is obtained from a rotation of 90o around from the σ axis on the 
Mohr’s Circle. The corresponding rotation in the physical plane is 45o . 

•	 The sum σ +σ  is an invariant of the transformation. The center of the 
x y

Mohr’s Circle does not move. This result too can be obtained from the 
equations derived simply by adding the expression for σ ’ to that obtained 

x 
for σ ’. 

y 

•	 So too the radius of the Mohr’s Circle is an invariant. This takes a little 
more effort to prove. 

Enough. Now onto the second topic of the chapter - the variation of stress com-

ponents as we move throughout the continuum. This is prerequisite if we seek to 

find extreme values of stress. 

4.2 The Variation of Stress (Components) in a 
Continuum 

To begin, we re-examine the case of a bar suspended vertically but now con-

sider the state of stress at each and every point in the continuum engendered by its 

own weight. (Note, I have changed the orientation of the reference axes). We will 

x 

y 

z 

F(y) + ∆F σ(y) + ∆σ 

∆y ∆y 

y ∆w(y) = γ A∆y σ(y) 
F(y) 

construct a differential equation which governs how the axial stress varies as we 

move up and down the bar. We will solve this differential equation, not forgetting 

to apply an appropriate boundary condition and determine the axial stress field. 

We see that for equilibrium of the differential element of the bar, of planar 

cross-sectional area A and of weight density  γ, we have 
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F + ∆F – γ A⋅ ⋅ ∆y – F = 0 

If we assume the tensile force is uniformly distributed over the cross-sectional area, and 
dividing by the area (which does not change with the independent spatial coordinate y) we 
can write 

+ – ⋅ ⁄σ ∆σ γ ∆y – σ = 0 where σ ≡ F A

Chanting “...going to the limit, letting ∆y go to zero”, we obtain a differential equation fix­
ing how σ(y), a function of y, varies throughout our continuum, namely 

dσ – γ = 0
y d 

We solve this ordinary differential equation easily, integrating once and obtain 

σ y =( )  γ ⋅ y + Cons t tan 

The Constant is fixed by a prescribed condition at some y surface; If the end of the bar is 
stress free, we indicate this writing 

at y = 0 σ = 0 

so 

σ y =( )  γ ⋅ y 

If, on another occasion, a weight of magnitude P0 is suspended from the free end, we 
would have 

at y = 0 σ = P0 ⁄ A 

and 

σ y =( )  γ ⋅ y + P0 ⁄ A 

Here then are two stress fields for two different loading conditions6. Each 

stress field describes how the normal stress σ(x,y,z) varies throughout the contin-

uum at every point in the continuum. I show the stress as a function of x and z as 

well as y to emphasize that we can evaluate its value at every point in the contin-

uum, although it only varies with y. That the stress does not vary with x and z was 

implied when we stipulated or assumed that the internal force, F, acting upon any 

y plane was uniformly distributed over that plane. This example is a special case 

in another way; not only is it one-dimensional in its dependence upon spatial posi-

tion, but it is the simplest example of stress at a point in that it is described fully 

by a single component of stress, the normal stress acting on a plane perpendicular 

to the y axis. 

6. A third loading condition is obtained by setting the weight density γ to zero; our bar then is assumed weight-
less relative to the end-load P0. 
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Stress Fields & “Micro” Equilibrium 

In our analysis of how the normal stress varied throughout the vertically sus-

pended bar, we considered a differential element of the bar and constructed a dif-

ferential equation which described how the normal stress component varied in one 

direction, in one spatial dimension. We can call this picture of equilibrium 

“micro” in nature and distinguish it from the “macro” equilibrium considerations 

of the last chapter. There we isolated large chunks of structure e.g., when we cut 

through the beam to see how the shear force and bending moment varied with dis-

tance along the beam. 

Now we look with finer resolution and attempt to determine how the normal 

and shear stress components vary at the micro level throughout the beam. The 

question may be put this way: Knowing the shear force and bending moment at 

any section along the beam, how do the normal and shear stress components vary 

over the section? 

To proceed, we make some appropriate assumptions about the nature of the 

beam and build upon the conjectures we made in the last chapter about how the 

stress components might vary. 
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We model the end-loaded cantile-

ver with relatively thin rectangular 

cross-section as a plane stress problem. 

In this, b is the “thin” dimension, i.e., 

b/L <1. 

If we assume a normal stress distri-

bution over an x face is proportional to 

some odd power of y, as we did in 

Chapter 3, our state of stress at a point 

might look like that shown in figure 

(c). In this, σ would have the form x 

, ( , ,  (σ (x y) = C  n b h) ⋅ W L  – x)yn 
x 

where C(n,b,h) is a constant which depends 
upon the cross-sectional dimensions of the 
beam and the odd exponent n. The factor 
W(L-x) is the magnitude of the internal 
bending moment at the location x mea­
sured from the root. See figure (b). 

h 

W 

L 

x 

y 

z 

(a)

 point A 

σx(x,y) 

point A b

(c) 

σx(x,y) 

W 

W(L-x) 

x 

W 

point A 
(b) 

x 

y 

But this is only one component of 

our stress field. What are the other 

components of stress at point A? 
(d) 

point A 
σxyOur plane stress model allows us to σx 

claim that the three z face components 

are zero and if we take σyz and σxz to be σx 
zero, that still leaves σxy,and σ in addi- σxy 

tion to σx. 

To continue our estimation process, 

we make the most of what we already know: For example, we know that a shear 

force of magnitude W acts at any x section. For the end-loaded cantilever, neglect-

ing the weight of the beam itself, it does not vary with x. We might assume, then, 

that the shear force is uniformly distributed over the cross-section and set 

y 

σ = –W ⁄ (bh) Our stress at a point at point A would then look like xy 
figure (d). 

We could, of course, posit other shear stress distributions at any x station, 

e.g., some function like σxy = Cons tant ⋅ ym 
where m is an integer and the con-

stant is determined from the requirement that the resultant force due to this shear 

stress distribution over the cross section must be W. 

The component σy - how it varies with x and y - remains a complete 

unknown. We will argue that it is small, relative to the normal and shear stress 

components, moved by the observation that the normal stress on the top and the 
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bottom surfaces of the beam is zero; we say the top and bottom surfaces are 

“stress free”. Continuing, if σy vanishes there at the bounary, then it probably 

will not grow to be significant in the interior. This indeed can be shown to be the 

case if h/L << 1, as it is for a beam. So we estimate σy=0. 

But there is something more 

we can do. We can look at equilibrium 

of a differerential element within the 

beam and, as we did in the case of a 

bar hung vertically, construct a differ-

ential equation whose solution (sup-

plemented with suitable boundary 

conditions) defines how the normal 

and shear stress components vary 

thoughout the plane, with x and y. 

Actually we construct more than a sin-

gle differential equation: We obtain 

two, coupled, first-order, partial differ-

ential equations for the normal and 

h 

W

L

y

z 

(a) 
point A b 

σy+ ∆σy 

σxy + ∆σxy

 elementσyx σy

xx

y 

σxy 

σx

y + ∆y 

y 

x + ∆x

σx + ∆σx 

σyx + ∆σyx 

By 

A differential

Bx
shear stress components. 

Think now, of a differential element 

in 2D at any point withinthe cantilever 

beam: We show such on the right. Note 

now we are no longer focused on two 

intersecting, perpendicular planes at a 

point but on a differential element of 

the continuum. Now we see that the stress components may very well be different 

on the two x faces and on the two y faces. 

We allow the x face components, and those on the two y faces to change as we 

move from x to x+∆x (holding y constant) and from y to y+∆y (holding x con-

stant). 

We show two other arrows on the figure, Bx and By. These are meant to repre-

sent the x and y components of what is called a body force. A body force is any 

externally applied force acting on each element of volume of the continuum. It is 

thus a force per unit volume. For example, if we need consider the weight of the 

beam, By would be just 

B = –γ where γ = the weight densityy 

where the negative sign is necessary because we take a positive component of the body 
force vector to be in a positive coordinate direction. 

Bx would be taken as zero. 

We now consider force and moment equilibrium for this differential element, 

our micro isolation. We sum forces in the x direction which will include the shear 

stress component σyx, acting on the y face in the x direction as well as the normal 

x 
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stress component σx acting on the x faces. But note that these components are not 

forces; to figure their contribution to the equilibrium requirement, we must factor 

in the areas upon which they act. 

I present just the results of the limiting process which, we note, since all com-

ponents may be functions of both x and y, brings partial derivatives into the pic-

ture. 

Forces in the x direction →∑ x∂ 
∂σx 

y∂ 
∂σyx Bx+ + 0= 

Forces in the y direction →∑ x∂ 
∂σxy 

y∂ 
∂σy By+ + 0= 

Moments about the center of the element →∑ σyx σxy = 

For example, the change in the stress component ∆σx may be written 

∂σx∆σ = ⋅ ∆xx ∂x 

and the force due to this “unbalanced” component in the x direction is 

∂σx ⋅ ∆x ⋅ (∆y∆z)∂x 

where the product, ∆y  ∆ z, is just the differential area of the x face. 

The contribution of the body force (per unit volume) to the sum of force com-

ponents in the x direction will be Bx(∆x∆y∆z) where the product of deltas is just 

the differential volume of the element. We see that this product will be a common 

factor in all terms entering into the equations of force equilibrium in the x and y 

directions. 

The last equation of moment equilibrium shows that, as we forecast, the shear 

stress component on the y face must equal the shear stress component acting on 

the x face. The differential changes in the shear stress components are of lower 

order and drop out of consideration in the limiting process, as we take ∆x and ∆y 

to zero. 

We might now try to solve this system of differential equations for σxy,and σy 

and σx but, in fact, we are doomed from the start. Even with the simplification 

afforded by moment equilibrium we are left with two coupled, linear, first-order 
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partial differential equations for these three unknowns. The problem is statically 

indeterminate so we are not going to be able to construct a unique solution to the 

equilibrium requirements. 

To answer these questions we must go beyond the concepts and principles of 

static equilibrium. We have to consider the requirements of continuity of displace-

ment and compatibility of deformation. This we do in the next chapter, looking 

first at simple indeterminate systems, then on to the indeterminate truss, the beam 

in bending and the torsion of shafts. 
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4.3 Problems 

4.1 A fluid can be defined as a continuum which - unlike a solid body - is 

unable to support a shear stress and remain at rest . The state of stress at any 

point, within a fluid column for example, we label “hydrostatic”; the normal 

stress components are equal to the negative of the static pressure at the point and 

the shear stress components are all zero. σx = σy = σz = -p and σxy = σxz = σyz =0. 

Using the two dimensional transformation relations (the existence of σz does 

not affect their validity) show that the shear stress on any arbitrarily oriented 

plane is zero and the normal stress is again -p. 

4.2 Estimate the compressive stress at the base of the Washington Monument 

- the one on the Mall in Washington, DC. 

4.3 The stress at a point in the plane of a thin plate is shown. Only the shear 

stress component is not zero relative to the x-y axis. From equilibrium of a section 

cut at the angle φ, deduce expressions for the normal and shear stress components 

acting on the inclined face of area A. NB: stress is a force per unit area so the 

areas of the faces the stress components act upon must enter into your equilibrium 

considerations. 

x 

y 

y

 x 

σxy 

σxy
y 

x 

y 

x’ 

y’ 

φ 

Area = A 

σ’ xy σ’ x 

σxy 

σxy 
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4.4 Construct Mohr’s circle for the state of stress of exercise 4.3, above.  Determine 

the "principle stresses"and the orientation of the planes upon which they act relative to the 

xy frame. 

4.5Given the components of stress relative 

σy = -1 to an x-y frame at a point in plane stress are: 

σ
σx = 4,  σ xy = 2  σ  = -1 

xy = 2 What are the components with respect to an 

axis system rotated 30 deg. counter clock-

y

wise at the point?
σx = 4 Determine the orientation of axis which 

x yields maximum and minimum normal 

stress components. What are their values? 

y 

4.6 A thin walled glass tube of radius R = 1 inch, and wall thickness t= 0.010 

inches, is closed at both ends and contains a fluid under pressure, p = 100 psi. A 

torque, Mt , of 300 inch-lbs, is applied about the axis of the tube. 

Compute the stress components relative to a coordinate frame with its x axis in 

the direction of the tube’s axis, its y axis circumferentially directed and tangent to 

the surface. 

Determine the maximum tensile stress and the orientation of the plane upon 

which it acts. 

4.7 What if we change our sign convention on stress components so that a 

normal, compressive stress is taken as a positive quantity (a tensile stress would 

then be negative).  What becomes of the transformation relations? How would 

you alter the rules for constructing and using a Mohr’s circle to find the stress 

components on an arbitrarily oriented plane? 

What if you changed your sign convention on shear stress as well; how would 

things change? 

4.8  Given the components of stress 
σy = -1

relative to an x-y frame at a point in plane 

stress are: σxy = 2
σx = 4,  σ xy = 2  σ y = -1 

What are the components with respect to y 
an axis system rotated 30 deg. counter σx = 4 

clockwise at the point? x 
Determine the orientation of axis which 

yields maximum and minimum normal 

stress components. What are their values? 

4.9 Estimate the “hoop stress” within an un-opened can of soda. 


