
Reflections: Design Exercise 4
1.050 Solid Mechanics

Fall 2004

A hollow aluminum shaft, two meters long, must transmit a torque of 20 KNm. and
bear a compressive load of 100 KN. The total angle of twist over the full length of the
shaft is not to exceed 2.0o, and of course, we do not want the shaft to yield. Size the
outside and inside diameters of the shaft striving to keep the volume of material a
minimum.

One common deficiency of student work on this exercise was in the way the onset of yield of the
aluminum was treated. Most all treated the possibilities of failure due to the compressive load and
failure due to twisting of the shaft independently1. All wrote expressions for the compressive
stress, let it be σc, and the shear stress due to torsion, let it be τ, correctly, i.e.,

where F is 100 KN, A is the area of the cross-section, A = π(Ro
2 - Ri

2), Mt is the applied torque, Mt
= 20 KN-m, and Ro and Ri are the outer and inner radii of the hollow shaft of length L = 2 meters.
But these two stress components, acting at any point at the outer surface of the shaft, need to be
“combined” and the maximum shear stress at that “any” point determined in order to apply the
maximum shear stress criterion for the onset of yielding. That criterion says that the material will
yield at a point when the maximum shear stress at the point equals the maximum shear stress
within a bar in tension at the onset of yield, i.e.,

We find the from the transformation
relations, or Mohr’s circle, for the state of
stress at the outer surface of the shaft. We
show Mohr’s circle at the right: Now the
maximum shear stress is just equal to the
radius of the circle, which we see is

So our condition on yielding becomes

1.  This may be due to the fact that I spent little time addressing the question of yielding due to combined stress before
the exercise was set.
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If we treat the compressive stress and the shear stress due to torsion independently we would
then require

Thus, if we treat the compressive stress and shear stress independently, we may very well satisfy
this last condition yet the shaft may still yield, the case if our max shear is just less than
but bigger than σyield/2.

In your particular situation, for the loadings as specified, whether it does or does not depends
upon what you take as a yield stress for Aluminum.

***

We seek now this constraint’s implications for choice of thickness and (outer) radius. To do this, we
make explicit how thickness and radius enter into this relationship. Actually, instead of thickness, t,
we will work with the ratio of inner to outer radius, Ri/Ro. They are related by t = Ro - Ri.

We have  where

We rework our constraint introducing non-dimensional expressions for our two design parameters,
Ro and Ri/Ro. We could just as well have chosen the thickness t = Ro- Ri instead of the ratio of the
radii. So we define

and, after considerable careful manipulation of all terms in express this
as:

where the dimensionless constants, for the numbers given, (taking σyield = 200E06 Pascals) are

σc σyield< and τ
σyield

2
--------------<

or

σc

2
-----

σyield

2
--------------< and τ

σyield

2
--------------<

so

σc

2
----- 

 
2

τ( )2
+ 2

σyield

2
-------------- 

 
2

< or
σc
2

------
 
 
 

2

τ( )2
+ 2

σyield

2
--------------⋅<

2
σyield

2
--------------⋅

σc
F
A
---= and τ

Mt Ro⋅
J

-----------------=

J
π
2
--- Ro

4
Ri

4
–( )⋅= and A π Ro

2
Ri

2
–( )=

y
Ro

L
------= and also set x

Ri

Ro
------=

σc
2

------
 
 
 

2

τ( )2
+

σyield

2
--------------<

C1
2

y
4

1 x
2

–( )
2

⋅
-------------------------------

C2
2

y
6

1 x
4

–( )⋅
2

-------------------------------+
1 2⁄

1<

C1
F

πL
2σyield

------------------------ 3.98
05–×10= = and C1

4Mt

πL
3σyield

------------------------ 7.96
06–×10= =
Fall 2004 11/22/04 LL Bucciarelli



The plot at the right shows the relationship between for this
constraint to be satisfied. For a given x, the outer radius must lie above the shaded region for the
inequality to be satisfied1.

As the thickness decreases, (and x
increases), we need to increase the outer
radius relative to the length of the shaft,
increasing J and A to keep the maximum
shear stress due to the combined torsion
and compression, within bounds.

***

It remains to consider the other constraint,
i.e., the angle of twist must not exceed 2o.
Φ< 0.035 radians.

We have

Putting J in terms of the radii and manipu-
lating, this condition may be written:

which, in terms of non-dimensional expres-
sions for the outer radius and the ratio of
inner radius to outer radius, becomes

We plot at the left below, the locus of x,y points if equality holds. All points above the shaded
region satisfy the inequality. In the plot at the right, we show the two curves together.

1.  Note: This is not the first plot I constructed. I originally scaled the y axis from 0 to.5 but this was not a good presen-
tation of the relationship.
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We include also three constant-area contour lines. To minimize area, one would like to reduce the
outer radius while, at the same time, reduce the thickness (x=Ri/Ro closer to 1.0).

We see that the constraint on the angle of rotation dominates, at least for thickness that are not too
small ( x large). Minimizing area in this case would mean moving up the constraint curve, Φ=2o,
as far as one can go. Ultimately, we will reach some point where the tube’s wall is so thin that buck-
ling will occur.

A possible design choice is the point (circled) at x = .95, y = 0.06. This gives an outer radius of
Ro=0.12 m and a wall thickness of t = .006 m.

My check for possible buckling says that we are in trouble if the shear stress due to torsion alone
approaches 300E06 Pascals. But experimental results show that buckling of this system is sensi-
tive to the slightest imperfections. Values obtained from experiment cluster around 75% of this
value and even drop below. Taking 50% of this as a “safe value”, we should be ok: The shear
stress due the torque Mt = 20E03 Nm is about 40E03 Pascals < 150E03 Pascals

Shell buckling due to the compressive load is also possible but we are well within the limit due to
this constraint.

Some observations:

• Other constraints will no doubt play a role in setting dimensions of the shaft. Avail-
able shafts may come in discrete forms. Of course a custom design could always be
specified but that is generally much more costly than going with what’s available “off
the shelf”.

• In a case such as this where there are two design parameters to be chosen, a plot
showing the boundaries on choices for the two gives a good picture of what is possi-
ble. In some cases the constraints will define a closed region.

• The plot of the max. shear stress locus of x,y pairs required me to use an iterative
method to find each point. This was not difficult, once I had developed a firm grip of
the problem, but getting there took a good bit of time ~ 24 hours!

• For the yield stress I chose, the constraint on the angle of twist dominated. This
means that even if you did not figure the max. shear stress due to the combined
stress state (first page here) you would probably be ok. Still, note that assuming the
two stresses act independently may lead to trouble.

L = 2 m

Ro =.12m

t =.006m
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