Design Exercise 6
1.050 Solid Mechanics
Fall 2004

You are to design a new experiment for 1.105, one which will demonstrate the effect of an
axial load on the bending stiffness of a beam constrained as shown in the appendix. The pro-
posed experimental set-up is shown in the figure.
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The beam is actually two (or four) identical “flexures” whose ends, firmly fixed to the rigid
plate at some distance L above the “ground” may still move freely in the horizontal direction.

Specifications are:

« Maximum values for the weight P and the force F are limited to the maximum
weights we used in our experiments this semester in 1.105.

+ The horizontal deflection A should be visible, on the order of 0.1 inches. A dial gage
will be used to obtain exact values.

« The apparatus should fit within the area available at a bay in the lab.
« A reduction in stiffness of at least 50% (from the P=0 value) should be possible.
» The flexures are to be made of a high strength steel and should not yield.
Tensile Strength = 140E03 psi
Yield Strength = 80E03 psi
The attached catalogue sheet shows a range of stock sizes for flexure material.t

1. http://www1.mscdirect.com/cgi/nnsrhm
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Appendix

In class last week, we set-up and solved the buckling problem of a beam fixed at one end
- x = 0in the figure - and constrained, in what at first appears to be a very unlikely condition, at the
other end x = L, namely, the transverse deflection is unrestrained while the slope of the deflected
curve is constrained to be zero. The first of these conditions implies that the shear force is zero at
X =L.

We solved the homogeneous differen-
tial equation
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with the homogeneous boundary conditions:

dv

v(0) =0 x| =0 at x=0
x=0
and
3
v @Yo v-0  arxeL
dx| _ d 3 dx
x=L X 3
but, since the slope was zero at x = L, this last condition became d% =0 atx=L.

dx

The general solution to the differential equation is:

[P P
V(X) = ¢y +CoX +Cgsin (=X + =X
(x) =cq+cyx+cgs J; c4cosJ;

and the boundary conditions gave four homogeneous equations for the four constants, the c's,
namely:

atx=0.
v(0)=0: ¢ + ¢y =
dv/dx=0: ¢ Ac3 =0
atx =L.
dv/dx=0: ¢ +(AcosAL)cy  -(AsinAL)cy, =0
Pv/dx3=0: +()\3c0s)\L)c3 —(7\3sin)\L)c4 =0
_ |P
where we set = JE

For a non-trivial solution of this system, the determinant of the coeficients must vanish.
This led to the condition

sinA\L = 0
which gave a lowest buckling load of AL = TI.

The corresponding buckling mode shape was obtained from the boundary conditions,
attempting to solve for the c’s. From the last condition, with sinAL = 0, we obtained c¢; = 0O; the
third then gave ¢, = 0; leaving us with the first which required ¢; = - ¢4 and hence the mode
shape

- LS|
V‘mode(x) =G E%_ COSTD
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We now consider the same structural system, but in addition to the axial load P, we apply a
transverse force F at the end x = L. The figure below shows our new set-up.

The differential equation remains the
same and three of the four boundary condi-
tions remain the same. But the condition at
x=L on the shear changes for now we have,
consistent with our usual sign convention:

V=F

So our boundary conditions now are:

v(0) =0 dv =0 at x=0
dx <=0
and
3
dv o @i - F o axeL
dx _ d 3 dx
x=L X 3
and again, since the slope was zero at x = L, this last condition becomes d% = —% atx=L.
dx

This is a significantly different problem now. It is no-longer an eigenvalue problem because
we no longer are presented with a homogeneous system of equations. In fact, we can now solve
explicitly for the ¢’s from the boundary conditions:

at x= 0.
v(0)=0: cg + cy =
dv/dx=0: ¢ Acs =0
atx = L.
dv/dx=0: ¢ +(AcosAL)cy -(AsinAL)cy =0
dv/dx3= - F/EI: +()\3cos?\L)C3 -()\3sin)\L)04 = F/El
The solution to these, which you are to verify, is:
c. = £ {L=cosAL) ___F o = F_ and o = __F {l-cosAl)
N sinAL 2 * A% Yo NE s

so the transverse displacement at any x is:

_ F (cosAL-1) L .
v(x) = )\3E|E[ S (CosAx—1) )\x+sm}\x} and
at x = L, the displacementis v(L) =A = ?!: [[2(1 — CoSAL) —)\L} which you should also verify**.
AN°El sinAL

3
If we let a=AL we can write: A = F3L E[Z(l_. Cosa)—a} *x
o El sina

which, for small alpha - which means for small axial load P - | can show that

3
A—FL

2
= DRI J1 + terms of order a”]

which should look familiar. (Recall Problem 11.1). For alpha not small we can write

F = KA where K

_ 12EI 3[ sina } *
3 1202(1-cosa)-asina
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So we see that the stiffness of the system, the K, depends upon the axial load P. If we let
Ko be the stiffness with no axial load, P = a = 0, i.e., Ko = 12EI/L° we can write

3
- _ @
K = K, Of (a) where f(a) = 12[2(1_

sina J ok
coso) - sim

and plot f as a function of alpha.
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Note that when O = T, the stiffness vanishes! This means that it requires no transverse force F to
produce a transverse displacement! Note too that O = TT. means that the axial load is just equal to
the buckling load of the system found previously.

*k%

The bending moment distribution along the flexure is obtained from the moment curvature relation-
ship, knowing v(x). 5

dv

M, = ElI—

" dx’
Verify that the bending moment distribution may be written cosq AL COSG%_ X
(W L

M, = FL .
asina

and that its maximum (in magnitude) is obtained at either end of the beam.

12/1/04 LL Bucciarelli





