
1.050 Engineering Mechanics I 

Summary of variables/concepts 

Lecture 27 - 37 
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Variable Definition 
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Notes & comments 

Convexity of a function 

External work 

Free energy and 
complementary free energy 

1 32 
N1 N2 N3 

δ1 δ2 P δ3 

ξ 0 

a b 

W d 

ψ * 
i 

ψ i 

x 

W d = ξ 
v 
⋅ F 
r 

d +ξ 
v

d ⋅ R 
r 

Ni 
= 
∂ψ i ∂ψ i 

* 

Ni ∂δ i 
δ i = ∂Ni 

iψ
* 
iψ 

Complementary 
free energy 

Free energy 
δ i 

∑δ iNi =ψ i 
*(Ni ) +ψ i (δ i ) 

i 

Lectures 27 and 28: Basic concepts: Convexity, external work, free energy, 
complementary free energy, introduced initially for truss structures (see schematic 
show in the lower right part).  
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Variable Definition 

Truss problems 

* d d− (ψ −ξ 
v 
⋅ R 
r)= 

! 
ψ −ξ 

v 
⋅ F 
r 

− εcom = εpot 
Complementary Potential 

energy energy 

com: ε= pot: ε= 

' '⎧max (− ε (N , R ))⎫ 
' com i 
i 

' ' ⎪⎪N S.A. ⎪⎪ ' '− εcom(Ni , R ) ≤ ⎨ is equal to ⎬ ≤ εpot (δ i ,ξi ) 
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Notes & comments 

At elastic solution: Potential 
energy is equal to negative of 
complementary energy 

Upper/lower bound 

At the solution to the 
elasticity problem, the upper 
and lower bound coincide 

Consequence of convexity of 
elastic potentials ψ ,ψ * 

Lectures 27 and 28: Introduction to potential energy and complementary energy, 
definition at the elastic solution, upper/lower bound, example of energy bounds for 
truss structures. The upper/lower bounds of the expressions are a consequence of 
the convexity of the elastic potentials (see previous slide). 
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Variable Definition Notes & comments 

Complementary free energy 
ψ * 
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ψ Free energy (1-D) 
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ψ = 
1 (W * +W ) Clapeyron’s formulas 2 

Significance: Enables one 
ψ * = 

1 (W * +W ) calculate free energy, 2 complementary free energy, 
potential energy and ε pot = 

1 (W * − W )
2 complementary energy 

directly from the boundary ε com = 
1 (W − W * ) conditions (external work), 2 

at the solution (“target”)! 

Lectures 27-29: The equations for free energy and complementary free energy for 
truss structures are summarized. Lower part:  Clapeyron’s formulas, used to 
calculate the “target” solution, that is, the results at the solution. These equations 
are generally valid, not only for truss structures (but the expressions of how to 
calculate the individual terms that appear in these equations are different).  
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Variable Definition Notes & comments 
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Lecture 30: Energy bounds for 3D isotropic elasticity. Note that the external 
work contribution under force (stress) boundary conditions involves a volume 
integral due to the volume forces (gravity). The lower part summarizes the 
equations used to calculate the free energy and complementary free energy, as well 
as the external work contributions (external work contribution part). 
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Variable Definition Notes & comments 
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Note 1: For 2D, the only 
contributions are axial forces 
& moments and axial strains 
and curvatures 

Note 2: Target solution using 
Clapeyron’s formulas 
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Lecture 31: How to calculate free energy, complementary energy and external 
work for beam structures. 
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Variable Definition Notes & comments 
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Step 1: Express target solution (Clapeyron’s formulas) – calculate complementary 
energy AT solution 
Step 2: Determine reaction forces and reaction moments 
Step 3: Determine force and moment distribution, as a function of reaction forces 
and reaction moments (need My and N) 
Step 4: Express complementary energy as function of reaction forces and reaction 
moments (integrate) 
Step 5: Minimize complementary energy (take partial derivatives w.r.t. all unknown 
reaction forces and reaction moments and set to zero);  result: set of unknown 
reaction forces and moments that minimize the complementary energy 
Step 6: Calculate complementary energy at the minimum (based on resulting forces 
and moments obtained in step 5) 
Step 7: Make comparison with target solution = find solution displacement 

Step-by-step procedure – 
how to solve beam 
problems with 
complementary energy 
approach 

Lectures 31-32: How to solve beam problems using the complementary approach. 
This slide shows the overview over the upper/lower bounds.  The lower part 
summarizes a step by step procedure of how to solve statically indeterminate beam 
problems with a complementary energy approach. 
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Variable Definition Notes & comments 

• For any homogeneous beam problem, the minimization of 
the complementary energy with respect to all hyperstatic 
forces and moments  yields the solution of the 
linear elastic beam problem: 
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Lectures 31-32: Corollary, how to solve statically indeterminate beam problems 
using the complementary approach. Summary of the concept that the minimization 
of the complementary energy with respect to hyperstatic forces and moments 
provides the exact solution of the linear elastic beam problem. 
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Variable Definition Notes & comments 

Euler beam buckling 
Different boundary 
conditions 

Example: Euler buckling 
of a frame structure 

Lectures 33: Buckling of beam structures under compressive load.  The lower part 
summarizes the experiment presented in class. 
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Variable Definition Notes & comments 

Properties and 
characteristic of instability 
phenomenon 

Introduction: Fracture – 
application and 
phenomena 

Lectures 34: Summary – characteristics of buckling phenomenon (equivalency of 
divergence of series, nonexistence of solution/bifurcation point/loss of convexity).  
Introduction to fracture. 
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Variable Definition 

P 
2γ bEIsPmax = 2l P 

Out-of-plane thickness: b 
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G = − pot = unitG = 2γ s ∂(lb)	 crack 

area 

Notes & comments 

P


P


Useful scaling laws 

Griffith condition for 
crack initiation 

Lectures 34 and 35: Fracture mechanics. The most important concept is the 
Griffith condition. The example on the top summarizes the derivation done in class, 
representing two beams that are pulled away from each other.  This 
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Variable Definition Notes & comments 
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Lectures 35: Fracture in continuum.  The equations summarized in the left side 
provide the energy release rate G for the geometry shown on the right.  At the point 
of fracture, the energy release rate must equal the surface energy.  This condition 
can then be used to determine the critical stress at which the structure begins to fail.  
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