1.050 Engineering Mechanics |
Summary of variables/concepts

Lecture 27 - 37




Variable

Definition

Notes & comments

f(x)

tangent

secant

T b-a)< f(b)-f(a)
OX x=a

X

Convexity of a function

Vi Vi

Free energy

Zé}Ni =‘//i*(Ni)+‘//i ()

we Wi=E.Fl4Z9.R External work
N; N ow Free energy and
'5s, i oN, complementary free energy
U/: Complementary
free energy
Vi .

Lectures 27 and 28: Basic concepts: Convexity, external work, free energy,
complementary free energy, introduced initially for truss structures (see schematic
show in the lower right part).



Variable Definition Notes & comments

Truss problems

(" -&R)=p-&-F
\ ] | ] At elastic solution: Potential

Y Y _ ~ Eeom = Epot energy is equal to negative of
Complementary Potential complementary energy
energy energy
= Ecom = ‘gpm

Upper/lower bound

max (= £, (N;, R')) At the solution to the
N;S.A. ]
B A o elasticity problem, the upper
— . < . & .
Zan (N3, R) < Is equal FO , < &u(0,4) and lower bound coincide
min ,,(5,,&
Lower bound KA. pot( i SC.) Upper bound Consequence of convexity of

elastic potentials v,y *

Lectures 27 and 28: Introduction to potential energy and complementary energy,
definition at the elastic solution, upper/lower bound, example of energy bounds for
truss structures. The upper/lower bounds of the expressions are a consequence of
the convexity of the elastic potentials (see previous slide).
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Definition

Notes & comments

P (.-'\"—;) = Zi l.\—’z/ I\—.‘.,'

Complementary free energy

v (1-D)
v U(6) =>, %f\'_a,vé'f Free energy (1-D)
(A W=>YF"& W=R"&| Contributions from external

i=1.N i=1.N work
y = %(W* +W) Clapeyron’s formulas
N Significance: Enables one
v =5 (W +W) calculate free energy,
complementary free energy,
e = 1 (\N* _ ) potential energy and
L2 complementary ener
p ry ay
e = E(\N _ *) directly from the boundary
cn- 9 conditions (external work),

at the solution (“target”)!

Lectures 27-29: The equations for free energy and complementary free energy for
truss structures are summarized. Lower part: Clapeyron’s formulas, used to
calculate the “target” solution, that is, the results at the solution. These equations
are generally valid, not only for truss structures (but the expressions of how to

calculate the individual terms that appear in these equations are different).




Variable Definition Notes & comments

Max(- &, ("))

Upper/lower bound for 3D

¢, (0')<{ isequalto !<e (& -
5?35\%) ¢ - ”E‘?‘}fi) elasticity problems
N ;,T]Kllr/lgpot(éz) i
Lower bound Solution Upper bound
Complementary energy Potential energy
approach approach
Displacement
contribution

Eeom(@) =y (@) -W'(T") W (T) = [ € T Complementary energy and

BN (Y _\W (B 7 potential energy
Zu(6) =y (€)-W(E) | External work contributions

(E) = [Z 70+ Z Tda

4] En:p.
Volume force  * Stress vector

contribution contribution
. <l o2 s? "
74 v By P Q Complementary free energy
1 3-D, isotropic material
On :%trace(g) s? =EQ:g—3o-§,) ( P )
w Y= J%(Kgf +G&2 o Free energy .
2 1 (3-D, isotropic material)
2 . 2
&, =trace(g) &4 = Z(E E= ggvj

Lecture 30: Energy bounds for 3D isotropic elasticity. Note that the external
work contribution under force (stress) boundary conditions involves a volume
integral due to the volume forces (gravity). The lower part summarizes the
equations used to calculate the free energy and complementary free energy, as well
as the external work contributions (external work contribution part).



Variable Definition Notes & comments
. W= .[ £N72+ 1MJ Complementary free energy
v 4 12ES 2°El (for beams)

1 1
{2 ES(e f + S (SS)Z}dx

112 6 12

&= unknown displacement at

T lution &y, = L Po
arget solution &eon = 2 point of load application

Free energy (for beams)

Note 1: For 2D, the only
contributions are axial forces
& moments and axial strains
and curvatures

Note 2: Target solution using
Clapeyron’s formulas

W= Y[ 06) R+, 06)M, o |= S [ ()R, + &2 ()R, + 0! ()M, ]

External work by prescribed
displacements

W= [E- o+ Y [EFox) + o,ME(x)]

x=0..1

= '[[cff £O(x) + 22 (x)Jox +Z[§SFX” () +EFL (%) + oM ()]

x=0..1

External work by prescribed
force
densities/forces/moments

Lecture 31: How to calculate free energy, complementary energy and external
work for beam structures.
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X (- (F1M, )

_gcom(Fx'vMyl)S iSEquaI to S‘(;pol(éx"wyl)
F'\My'S.A H ' ' &0, KA.
min ¢ , 0,
PR &ho))
Lower bound Solution Upper bound
My .
Complementary that proviée Potential energy
energy absolute approach
approach max of — £ “Displacement
“Stress approach” approach)
&,
Work with unknown that provide Work with unknown
but S.A. moments and absolute butK.A.
forces min of ¢, displacements

Step 1: Express target solution (Clapeyron’s formulas) — calculate complementary
energy AT solution

Step 2: Determine reaction forces and r_eaptio_n moments ) ] Step_by-step proced ure —
Step 3: Determine force and moment distribution, as a function of reaction forces

and reaction moments (need My and N) hOW to Solve beam

Step 4: Express complementary energy as function of reaction forces and reaction .

moments (integrate) prOblemS W|th

Step 5: Minimize complementary energy (take partial derivatives w.r.t. all unknown

reaction forces and reaction moments and set to zero); result: set of unknown com P|ementary enefgy

reaction forces and moments that minimize the complementary energy a roaCh
Step 6: Calculate complementary energy at the minimum (based on resulting forces pp
and moments obtained in step 5)

Step 7: Make comparison with target solution = find solution displacement

Lectures 31-32: How to solve beam problems using the complementary approach.
This slide shows the overview over the upper/lower bounds. The lower part
summarizes a step by step procedure of how to solve statically indeterminate beam

problems with a complementary energy approach.



Variable Definition Notes & comments

«  For any homogeneous beam problem, the minimization of
the complementary energy with respect to all hyperstatic
forces and moments X, = R, M,, } yields the solution of the
linear elastic beam problem:

d
—(&,,(X.))=0
axi ( com( I))
1 N
E(\N_W )=n’>]<|‘ngcom(xi)
Example:
P l,p o Ry = [Cre 5 jopipy Lyepe
com 2EI 3 24 24
2 2
%umR) _y R 5
R R’ 16
Hyperstatic force
P
g I fan (R'= )= L 18
y (31 16 1536 EI
y +
€ com :£P§§£mm(R':iP): ! N
;j 2 16 1536 El
, 7
4 = 5= 1°p
M, (x) 768 EI

Lectures 31-32: Corollary, how to solve statically indeterminate beam problems
using the complementary approach. Summary of the concept that the minimization
of the complementary energy with respect to hyperstatic forces and moments
provides the exact solution of the linear elastic beam problem.



Variable Definition Notes & comments
4 Clamped cantilever beam ¥ 3
e=2
P < P.,, - "T)‘L‘? Single supported beam 'lﬁ
T (el) < e=l Euler beam buckling
_ ] ... 3 Different boundary
el ‘effective length o
Double clamped k COﬂdItIOf‘IS
cantilever beam
e= %
\ & ~ter

Example: Euler buckling
of a frame structure

No load apglied Small load applied
bakow buckling lcad
Structure stable

Pe<P P<P,

Lectures 33: Buckling of beam structures under compressive load. The lower part
summarizes the experiment presented in class.



Variable Definition Notes & comments

+ (i) iterative solution using conventional small deformation
beam theory (divergence of series)

(i) application of | eraion Eea Properties and

« (ii) application of large-deformation beam theory - . -

(nonexistence of solution since determinant of characteristic of instability
coefficient matrix is zero - bifurcation point) phenomenon

= (iii) instability is equivalent to loss of convexity
(energy approach)

Images removed due to copyright restrictions: Introduction: Fracture —
photograph of fault line, World Trade Center towers, application and
shattered wine glass, X-ray of broken bone. phenomena

Lectures 34: Summary — characteristics of buckling phenomenon (equivalency of
divergence of series, nonexistence of solution/bifurcation point/loss of convexity).
Introduction to fracture.



Variable Definition Notes & comments

Pmax = 27/SI:ZJEI | | . ; v
| P P

Out-of-plane thickness: b

1
« Smaller crack length, larger fracture force H‘m - /

Useful scaling laws

« Larger surface energy, larger fracture force Rm ._ \.":}’,_
« Critical load depends on geometry of material (captured in f) Hm —~ \,ﬁ
Ib=T - N
G=2y G=-— agPOI = unit Griffith condition for
° o(lb) crack | crack initiation
area

Lectures 34 and 35: Fracture mechanics. The most important concept is the
Griffith condition. The example on the top summarizes the derivation done in class,
representing two beams that are pulled away from each other. This



Variable Definition Notes & comments

BRERE

a Fracture in a
; continuum
o = \/7 Initial surface crack of
112°ma length a

P

2
G :1_122%: 2y

Lectures 35: Fracture in continuum. The equations summarized in the left side
provide the energy release rate G for the geometry shown on the right. At the point
of fracture, the energy release rate must equal the surface energy. This condition
can then be used to determine the critical stress at which the structure begins to fail.



