1.050 Engineering Mechanics |
Summary of variables/concepts

Lecture 16-26




Variable Definition Notes & comments

Define undeformed position
Deformed position

Displacement vector

2 Position vector, underformed
configuration Note: Distinction between

% Position vector, deformed capital “X" and small “x
configuration

é E=x-X Displacement vector
F =Grad(%) =1+ Grad(¢) Deformation gradient tensor

o X, Relates position vector of
E=Fg @8 Fy :('ij undeformed configuration with

d% = F -dX deformed configuration

Lectures 16 and 17: Introduction to deformation and strain

Key concepts: Undeformed and deformed configuration, displacement vector, the
transformation between the undeformed and deformed configuration is described by
the deformation gradient tensor

Derivation first for general case of large deformation



Variable Definition Notes & comments

( 3=99% _gerp
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J = Jacobian volume change

fida = J (ET )—1 NdA Surface change (area & normal)

=F'F-1 2-12=dX ~ET£—;).d)Z =dX -2E-dX| Definition of strain tensor

Large-deformation theory
N
Im

A, = AL, 2E,, +1-1 Relative length variation in the
p a-direction
. 2E,,
NG = N Angle ch b
\ T @+ A,) A+ Ay) ngle change between two
vectors
HGrad EH <«<1

£= %(grad E+ (grad E)T)

()

Small deformation strain tensor

=2\ ax, o For Cartesian coordinate system

Lecture 18: How to calculate change of geometry (angle, volume, length..)

Small deformation theory: The small deformation theory is valid for small
deformations only; for this case the equations simplify. These concepts are most
important for the remainder of 1.050.



Variable Definition Notes & comments
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& Eu Mohr circle of strain tensor
E(f)=¢-fi (strain vector)
A= E () = Lo LT sy
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Y = t-E | n)= Qsin:—jr):

Lecture 18: Small deformation - Mohr circle for strain tensor. Any strain tensor can
be represented in the Mohr plane; this way, one can display a 3D tensor quantity in
a 2D projection. All concepts are the same as for the stress tensor Mohr plane.
The quantities on the x/y-axes are dilatations and angle change (shear).



Variable Definition Notes & comments

oW Work done by external forces

dy Free energy change

Non-dissipative deformation=
dy =W elastic deformation Defines thermodynamics of

All work done on system elastic deformation

stored in free energy

aldx - aldg
o oog Solution approach 1D truss systems
vdx;, Vdg,
Oii = Gijuéu . P -
Link between stress and Also called “generalized
strain Hooke’s law”

S|
Il

e
[y

Lectures 20 and 21: Elasticity, basic definitions. The most important concept of
this lecture is that elastic deformation is a thermodynamic process under which no
energy dissipation occurs. This concept can be generally applied to characterize
any elasticity problem. We derived elasticity for 1D systems (including solution
strategy), and then generalized it to 3D. This led to the link between stress and
strain.



Variable Definition Notes & comments

Isotropic elasticity described

Isotropic elasticity Elastic properties of material uniquely by 2 parameters, K

do NOT depend on direction

and G
1 1 “ ”
E \Q\ZJE@;QT):\/EZZqﬁ Length” of a tensor
i
dQ, —do
r(e) tr(g)=g:l=ey+ep+epn= # “Volume change” of a tensor
0
Free energy due to volume
! 1 strain and shear strain
Y(e,, &) ¥ ="Ke+>Gsgl . .
2 2 (assumption, mathematical

model to describe elastic
behavior of isotropic solids)

Linear isotropic elasticity

o-=(K —%ngvyzegz(r( —%G)(eu+gzz +e5 L+ 2Ge
Tensor notation

Lecture 22: Isotropic elasticity, basic concepts. The most important equation on
this slide is the one on the bottom, for linear isotropic elasticity. Note that isotropic
elasticity is fully characterized by two constants, K and G. These two parameters
have physical meaning; K describes how the free energy changes under volume
changes, and G describes how the free energy changes under shear (shape)
changes.



Variable Definition Notes & comments
2
(an = (K - ng(gn +&y+ 833)+ 2Gg,
2
Oy =(K—§G)(511+522+533)+2G522 . . . o
Linear isotropic elasticity
< 0-33:(K—EGJ(511+522+533)+26533 . .
3 Written out for individual
o, = 2Ge,, stress tensor coefficients
O, =2Ge,,
\ 013 =2Géy,
r 4 ) Linear isotropic elasticity
aﬂ:{K +ijgn+(Kfijgzz+(K7 6}833 . .
?é i 4 Written out for individual
Op = [K _EGJE“ + [K +§Gje22 + [K _nggss stress tensor coefficients,
5 5 4 collect terms that multiply
< O = (K - gG)gﬂ * (K - 56)522 * (K * gejgﬁ strain tensor coefficients
=2G 4
%12 &2 Ci111=Coppp = Cyags= K+ EG
Oy = 2G &y 2
Ci122 = G133 = Cpoa3 = K--G
kaﬂ =2Gg, 3

Ci210 = C3p3=Cra313= 2G

Lecture 22: Isotropic elasticity, equations that relate stress and strain. Here we
summarize the equations in different forms. On the bottom, right, you see how to
calculate the elasticity tensor coefficients from K and G.



Overview: 3D linear elasticity

Stress tensor g(X) Strain tensor £(X)

Basis: Physical laws Basis: Geometry
(Newton’s laws)

BCs on boundary of domain i s bouncirzry of_’domain Q
00, T4y =g 016" =6
o Linear deformation theory
”Grad f” <<1

Q! f(ﬁ)zg n
divo+ g =

A

Statically admissible (S.A.)
A

Ojj ; gzl(grad§+(grad§)T)

| {5 65}
& =
\ . o2l ox, ox

Elasticity = Basis: Thermodynamic

2
O = C:g O :Cijklgkl o= K —§G)€V1.+ ZG£

Kinematically admissible (K.A.)

j

Isotropic solid

Summary, 3D linear elasticity. This page may be useful to keep an overview over
the methods and approaches covered here. This summary is valid for any linear
elasticity problem.



Variable Definition Notes & comments

» Step 1: Write down BCs (stress BCs and
displacement BCs), analyze the problem to
be solved (read carefully!)

e Step 2: Write governing equations for
stress tensor, strain tensor, and constitutive
equations that link stress and strain, simplify
expressions Solution procedure to solve

3D elasticity problems

» Step 3: Solve governing equations (e.g. by
integration), typically results in expression
with unknown integration constants

o Step 4: Apply BCs (determine integration
constants)

Lecture 23: Solution approach, 3D isotropic elasticity problems. This is a 4-step
solution procedure that guides you through the process.



Variable Definition Notes & comments
£, =&+ 1952
o d%
8, :_FZZ Curvature Navier-Bernouilli beam
En o def _ model; strain distribution in
fw="4 ~ Strain beam section
_dg_de,
o dx dx?
Z
H X Uniaxial beam deformation
yot 3K -2G Poisson’s ratio (lateral
v 2 3K+G contraction under uniaxial
Epy =&, = —VEy tension)
9KG
=3K2G Young’s modulus (relates
E stresses and strains under
o, =Eeg, uniaxial tension)

Lecture 19 and 24: Beam deformation and beam elasticity. Here we only review
the beam bending case for 2D systems. Beam elasticity is a special case of 3D
elasticity, adapted for the particular (stretched) geometry of beams. This slide also
reviews the introduction of Young’'s modulus E and Poisson’s ratio. Both can be
calculated from K and G.



Variable Definition Notes & comments

S S= fds Cross-sectional area
S

| I = f 2°dS Second order area moment
S

d2e0 Beam bending stiffness
El M, =-El o ElS, (relates bending moment and
curvature)

d’g) _ f, Governing differential
dx? ES equation, axial forces

440 f Governing differential
dx* _El equation, shear forces

e Step 1: Write down BCs (stress BCs and
displacement BCs), analyze the problem to be
solved (read carefully!)

« Step 2: Write governing equations for ¢&,.¢, ... Solution procedure to solve

» Step 3: Solve governing equations (e.g. by beam elasticity problems
integration), results in expression with unknown
integration constants

e Step 4: Apply BCs (determine integration
constants)

Lecture 25: Beam elasticity, cont'd. Note the two differential equations for axial
load/displacement and shear load/displacement in the z-direction. This slide also
summarizes the 4-step approach to solve beam problems.



Variable Definition Notes & comments

~

: d's, f, d*g, .

£ o "Bl —dxi El =f, Shear force density
o Q d2 3
c E 51 :_& _d é:z —
5 S < ™ e 0 El =Q, Shear force
QO - d2§ M d2§ .
own z __ Y _ z — B d t
c § e e v El=M, ending momen
@
2 di:,wy _9g Rotation (angle)

3 dx ax 7

3 L £ £ Displacement

-
[@)] 2 £0
S d2 f 420 . . .
= LA _ES 5% _ Axial force density (e.g. gravit
£ ¢ o " Es ES- o =1, y (e.g. gravity)
25 .
o % < di:go Axial strain
£ dx
s 3
@ £ Axial displacement
\ X

Lecture 25: Beam elasticity, governing equations for both beam bending and beam
stretching. This slide reviews the physical meaning of the different derivatives.



Variable Definition Notes & comments

f(x) function of x
f'(x)=0 necessary condition for
min/max How to find
min/max of
f'(xX)<0 local maximum functions

f''(x)>0 local minimum

f"(x)=0 inflection point

e Start from  f,=EI&" , then work your way up...
U~ f
« Note sign changes: 5?,, ‘ : +o -
gz - _Qz

& =M,
Drawing/sketching

&~ -,
£~z 9 approach

« At each level of derivative, first plot extreme cases at ends of
beam

* Then consider zeros of higher derivatives; determine points of
local min/max

» &, represents physical shape of the beam (“beam line”)

Lecture 26: Drawing of beam problems. Note the sign changes, as indicated. The
approach is based on the concept of considering min/max values of the functions;
since all physical quantities are derivates of one another, this approach can be
easily applied to plot the solution.



Variable Definition Notes & comments

L =-p-g
' Example
-_“--\-_-""L = —_—— -~ —
—_— () p(x Ij £ 7
} p = force/length
i 1. % 5 Lty
l/l |> My(X)—p[gl +?—§Ixj -&
max 3 EI
s o,0=Lti X 2| g
{ " " EIl8 6 16
5 _ P(lp., X 5 3
e £(0 EI[16| 2 48|Xj

Lecture 26: Example. Remember to clearly indicate the coordinate system when
you draw beam elasticity solutions.



Variable Definition Notes & comments

Concentrated force

- o
P

Hinge (bending)

£ -0 Commin beam
A boundary conditions

| B N

M, =0 £=0
o, =0
o (Z:X) = E(N(X) M) zj: Ne) M0, Stress distribution within
ES El S ' cross-section

Lecture 26: Common boundary conditions in beam problems, plotting of stress
distribution within cross-section.



