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Variable Definition  Notes & comments 

Pi-theorem (also definition of 
physical quantities,…)

Physical similarity means that Physical similarity
all Pi-parameters are equal

Galileo-number (solid 
mechanics)

Reynolds number (fluid 
mechanics)

Extended base dimension 
system

Lectures 1-3 and PS2
Important concepts include the extended base dimension system, distinction 
between units and dimensions, the formal Pi-theorem based procedure and the 
concept of physical similarity.  
Applications include calculation of physical processes like atomic explosion, drag 
force on buildings etc. 



2

Variable Definition  Notes & comments 

rv vr = dxr / dt Velocity vector
rra a = dvr / dt Acceleration vector

Unit vectors that 
er r r

1,e2 ,e3 define coordinate 
system = basis

Normal vector 
r Always points outwards of n

domain considered

Force vector (force that acts 
on a material point)

Angular momentum

rx xr = x er + x r r
1 1 2e2 + x3e3

Position vector

r r r
p p = mv = m(v1e

r
1 + v2e

r v er2 + 3 3) Linear momentum

xr r r r r r
i × pi xi × pi = xi ×mivi

r
F F

r
= F er r r

x x + Fyey + Fzez

Covered in lecture 4 and PS1
Basic definitions of linear momentum, angular momentum, normal vector of domain 
boundaries
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Variable Definition  Notes & comments 

Dynamic resultant theorem
r v def r Change of linear momentum d ( p) / dt = d (mv) / dt = F is equal to sum of external 

forces

Dynamic moment theorem
Change of the angular motion 
of a discrete system of i = 1,N 
particles is equal to the sum of 
the moments (or torque) 
generated by external forces

Newton’s three laws

Static EQ (solve truss problems) 

1. Every body continues in its state of 
rest, or of uniform motion in a right 
line, unless it is compelled to change 
that state by forces impressed upon 
it.

2. The change of motion is proportional 
to the motive force impresses, and is 
made in the direction of the right line 
in which that force is impressed.

3. To every action there is always 
opposed an equal reaction: or, the 
mutual action of two bodies upon 
each other are always equal, and 
directed to contrary parts.

d ∑
N

( )r r def

∑
N

xi ×mivi = (r r )
N r

x ×F ext ext
i = ∑M

dt i i
i=1 i=1 i=1

Lecture 4:  These laws and concepts form the basis of almost everything we’ll do in 
1.050.
The dynamic resultant theorem and dynamic moment theorem are important 
concepts that simplify for the static equilibrium.  This can be used to solve truss 
problems, for instance. 
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Variable Definition  Notes & comments 

REV=

Representative volume element

‘d’=differential element

Must be:

(1) Greater than any in 
homogeneity (grains, 
molecules, atoms,..)

(2) Much smaller than size of the 
system

Atomic bonds
O(Angstrom=1
E-10m)
Grains, 
crystals,…

REV

dΩ
Continuum 
representative 
volume element
REV

∂Ω Note the difference between Surface of domain Ω
‘d’ and  '    o∂' perator

Lecture 5
The definition of REV is an essential concept of continuum mechanics:  Separation 
of scales, i.e., the three relevant scales are separated sufficiently.  There are three 
relevant scales in the continuum model.  Note:  The beam model adds another 
scale to the continuum problem – therefore the beam is a four scale continuum 
model.  

Skyscraper photograph courtesy of jochemberends on Flickr.

http://www.flickr.com/photos/jochemberends/2416983119/
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Variable Definition  Notes & comments 

⎛T ⎞
r x
r r ⎜ ⎟ Stress vector 

T (n, x) = ⎜Ty ⎟
⎜ ⎟ (note:  normal always points⎝Tz

 out ⎠
of domain)

Force density that acts on a 
material plane with normal nr

at point xr

T
r
(nr, xr) = σ (xr) ⋅nr

Stress matrix

Stress tensor

p Pressure (normal force per area 
that compresses a medium)

σ = σ erij i ⊗ er j

Lecture 5, 6, 7
These concepts are very important.  We started with the definition of the stress 
vector that describes the force density on a particular surface cut.  
The stress tensor (introduced by assembling the stress matrix) provides the stress 
vector for an arbitrary plane (characterized by the normal vector).  This requirement 
represents the definition of the stress tensor;  by associating each entry with two 
vectors (this is a characteristic of a second order tensor).  
The pressure is a scalar quantity;  for a liquid the pressure and stress tensor are 
linked by a simple equation (see next slide).    
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Variable Definition  Notes & comments 

Differential equilibrium (solved 
by integration)

on S :
d

on∂Ω : T = T (n)

EQ for liquid (no shear 
stress=material law)

Divergence theorem (turn 
surface integral into a volume 
integral)

divσ + ρ (gr − ar) = 0 Differential E.Q. written out 
for cartesian C.S.

In cartesian C.S.

Lecture 5, 6, 7
We expressed the dynamic resultant theorem for an arbitrary domain and 
transformed the resulting expression into a pure volume integral by applying the 
divergence theorem.  This led to the differential EQ expression; each REV must 
satisfy this expression.  The integration of this partial differential equation provides 
us with the solution of the stress tensor as a function of all spatial coordinates.  
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Variable Definition  Notes & comments 

Divergence of stress tensor in cylindrical C.S.

Divergence of stress tensor in spherical C.S.

PS 4 (cylindrical C.S.)
This slide quickly summarizes the differential EQ expressions for different 
coordinate systems.  
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Variable Definition  Notes & comments 

Section quantities - forces
=

=

σ Stress tensor beam geometry

Beam geometry

Section quantities - moments

Nx

z
y h,b << l

z

Section

Lecture 8
Introduction of the beam geometry.  The beam is a ‘special case’ of the continuum 
theory.  It introduces another scale:  the beam section size (b,l) which are much 
smaller than the overall beam dimensions, but much larger than the size of the 
REV.  



9

Variable Definition  Notes & comments 

Beam EQ equations

+BCs

+BCs 2D planar beam EQ 
equationsz

x

Lectures 8, 9
The beam EQ conditions enable us to solve for the distribution of moments and 
normal/shear forces.  
The equations are simplified for a 2D beam geometry. 
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Variable Definition  Notes & comments 

EQ for truss structures 
(S.A.)
Strength criterion for 
truss structures (S.C.)

σ 0 Tensile strength limit
Fσ max

0 = A0

P P

Fmax = Fbond N A0

# bonds per area A0

Strength per bond

A0

Concept: Visualization of the 
‘strength’

Number of atomic bonds per 
area constant due to fixed 
lattice parameter of crystal 
cell

Therefore finite force per 
area that can be sustained

x
x

x:  marks bonds that break at max force
Fbond

Lecture 10, PS 5 (strength calculation)
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Variable Definition  Notes & comments 

Mohr plane (τ and σ)
Mohr circle
(Significance:  Display 3D 
stress tensor in 2D)

T
r
(xr,nr) = σnr +τt

r

σ ,τ Basis in Mohr plane

Principal stresses

Principal stress directions

Principal stresses and 
directions obtained through 
eigenvector analysis

Principal stresses
=Eigenvalues
Principal stress directions 
=Eigenvectors

σ I ,σ II ,σ III

urI ,u
r

II ,u
r

III

Lecture 11 
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Variable Definition  Notes & comments 

At any point,       must be: 
Two pillars of 

(1) Statically admissible (S.A.)stress-
strength and
approach

(2) Strength compatible (S.C.)

σ

• Equilibrium conditions “only” specify statically admissible 
stress field, without worrying about if the stresses can 
actually be sustained by the material – S.A.
From EQ condition for a REV we can integrate up 
(upscale) to the structural scale 
Examples: Many integrations in homework and in class;  
Hoover dam etc.

• Strength compatibility adds the condition that in addition 
to S.A., the stress field must be compatible with the 
strength capacity of the material – S.C.
In other words, at no point in the domain can the stress 
vector exceed the strength capacity of the material
Examples: Sand pile, foundation etc. – Mohr circle

Lecture 10, 11, 12 (application to beams in lectures 13-15)
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Variable Definition  Notes & comments 

Max. shear stressc
Tresca criterion

Strength domain (general 
definition)
Equivalent to condition for S.C.

Dk

Dk ,Tresca

v v
∀n : f (T ) =σ − c ≤ 0 Max. tensile stress

Dk ,Tension−cutoff Tension cutoff criterion

c

Lecture 11
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Mohr-Coulomb

Variable Definition  Notes & comments 

Dk ,Mohr−Coulomb

=µτ

σ
c cohesion
c=0 dry sand 

τ

σ

Angle of repose

Max. shear stress
function of σ

N Friction force

Shear resistance increases 
with increasing normal force

F N N
F frict = µ = tanϕ ⋅

frict

µ

Ffrict

Lecture 12 (Mohr-Coulomb criterion)
The definition of friction is included here for completeness
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Variable Definition  Notes & comments 

Moment capacity for beamsFor rectangular cross-section
b,h

Nx =
lim

N0
Nx = N bhσ

lim 0 = 0 Strength capacity for beams

M-N interaction (linear)
f (M y , Nx ) ≤ 0

M-N interaction (actual); 
convexity

M N
f (M , ) = y + x

y Nx −1≤ 0
M 0 Nx

M y ⎛ N ⎞
2

f (M , ) = + ⎜ x
y Nx ⎟ −1≤⎜ ⎟ 0

M 0 ⎝ Nx ⎠

1

1

DS Strength domain for beams

Lecture 13 and 14
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Variable Definition  Notes & comments 

Safe 
strength Linear combination is safe domain (convexity)

: load bearing capacity of 
i-th load case

Lecture 15


