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1.050 Engineering Mechanics I 

Lecture 29 

Energy bounds in 1D systems


Examples and applications


1.050 – Content overview 
I. Dimensional analysis 

II. Stresses and strength 

III. Deformation and strain 

I. Dimensional analysis 
1.	 On monsters, mice and mushrooms 
2.	 Similarity relations: Important engineering tools 

II. Stresses and strength 
3.	 Stresses and equilibrium 
4.	 Strength models (how to design structures, 

foundations.. against mechanical failure) 

III. Deformation and strain 
5.	 How strain gages work? 
6.	 How to measure deformation in a 3D 

structure/material? 

IV. Elasticity 
7.	 Elasticity model – link stresses and deformation 
8.	 Variational methods in elasticity 

V.  How things fail – and how to avoid it 
9.	 Elastic instabilities 
10.	 Plasticity (permanent deformation) 

1 11. Fracture mechanics 

Lectures 1-3 
Sept. 

Lectures 4-15 
Sept./Oct. 

Lectures 16-19 
Oct. 

Lectures 20-31 
Oct./Nov. 

Lectures 32-37 
Dec. 2 

Example system: 1D truss structure 

Rigid boundary 

1 32 
IV. Elasticity 

… 
Lecture 23:  Applications and examples N1 N3N2Lecture 24:  Beam elasticity 
Lecture 25: Applications and examples (beam elasticity)

Lecture 26:  … cont’d and closure

Lecture 27:  Introduction: Energy bounds in linear elasticity (1D system) 

Lecture 28:  Introduction: Energy bounds in linear elasticity (1D system), cont’d


Rigid bar 

δ1 δ2 δ3Lecture 29:  1D examples 
Lecture 30:  Generalization to 3D P 
… 

V. 	How things fail – and how to avoid it 
Lectures 32 to 37 ξ 0 

3	 4 
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Minimum potential energy approach 
Conditions for Consider two kinematically admissible (K.A.) 
kinematically admissible displacement fields 
(K.A.):  Deformation 
must be compatible w/ (1) 
rigid bar 

Approximation δ1 
‘ = δ2 

‘ = δ3 ‘ = ξ0 ‘ 
to solution 
(K.A.) 

N1 

(2) 
δ1δ

2 3 

2N 3N

1 δ2 P 
δ3 

δ2 = δ1 + 
2 (ξ0 −δ1 )Actual solution 
3ξ 0 

Prescribed force δ3 = δ1 + 
4 (ξ0 −δ1 )3Unknown 

displacement 5 

Minimum potential energy approach 

(1) 

Approximation δ1 
‘ = δ2 

‘ = ‘ δ3 ‘ = ξ0 ‘ ε pot (ξ0
' ) = − 

1 P2 
to solution 6k(K.A.) 

is larger than 
(2) 

δ1

δ2 = δ1 + 
2 (ξ0 −δ1 )Actual solution 
3 

δ3 = δ1 + 
4 (ξ0 −δ1 )3 

2 
10pot 48 

11)(ξε , P
k

−=δ 
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Minimum potential energy approach 

εpot (δ i ,ξ0 ) =ψ (δ i ) − Pξ0 ≤ψ (δ i 
' ) − Pξ0

' = εpot (δ i 
' ,ξ0

' ) 

Potential energy of actual solution is always smaller than the solution 
to any other displacement field 

Therefore, the actual solution realizes a minimum of the potential 
energy: 

εpot (δ i ,ξi ) = min εpot (δ i 
' ,ξi 

' )
'δi K.A. 

To find a solution, minimize the potential energy for a selected choice 
of kinematically admissible displacement fields 

We have not invoked the EQ conditions! 6 

Minimum complementary energy approach 
Conditions for statically 
admissible (S.A.) Consider two statically admissible force fields 

N1 + N2 + N3 = R (1) 
3N1 + N2 − N3 = 0 N1

' N2
' 

Approximation N1
' , N 2

' 

to solution

Still S.A.


1


R ' ξ 0 
d


N1


(2) 
δ

2 3 

2N 3N

1 δ2 R 
δ3 

N1 N2 N3 N1 = 1/12R 
Actual 

ξ 0 
d N2 = 1/ 3Rsolution 

Prescribed (obtained in 

displacement lecture 20)
 N = 7 /12R 
Unknown force R ξ 0 

d 3 

8 
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Minimum complementary energy approach 

),()()(),( '' 
com 

' 
0 

'* 
0 

* 
com RNRNRNRN i 

d 
i 

d 
ii εξψξψε =−≤−= 

9 

Complementary energy of actual solution is always smaller than the 
solution to any other displacement field 

Therefore, the actual solution realizes a minimum of the 
complementary energy: 

),(min),( '' 
com

S.A. 
com ' 

RNRN i
N

i 
i 

εε = 

To find a solution, minimize the complementary energy for a selected 
choice of statically admissible force fields 

We have not invoked the kinematics of the problem! 

Minimum complementary energy approach 

(1)
N1

' N2
' 

Approximation N1
' , N 2

' 

to solution 
Still S.A. ε com (R ' ) = − 

1 k (ξ0 
d )2 

5 
R ' ξ 0 

d 

(2) is larger thanN1 N2 N3 N1 = 1/12R 
Actual 
solution N2 = 1/ 3R 
(obtained in 
lecture 20) 

R ξ 0 
d N3 = 7 /12R 

( )2 

01com 11 

12(Rε ), dkN ξ−= 
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Combine: Upper/lower bound 

Treat this BC with complementary energy approach 

N1 ε com (N1 ) =ψ * (Ni ) − 0ξ d R 

= 0 
δ

2 3 

2N 3N

1 δ2 P 
δ3 

ε (N ) = 
1 (12N 2 − 2PN + P2 )ξ 0 com 1 1 14kPrescribed force


Unknown displacement


Find min: 
∂ε com (N1 ) 

= 0 N = 
1 P ε com = 

11 P2 

∂N1 
1 12 48k 
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Combine: Upper/lower bound 

' '⎧max(− ε (N , R ))⎫ 
' com i 
i 

' ' ⎪⎪N S.A. ⎪⎪ ' '−εcom(Ni , R ) ≤ ⎨ is equal to ⎬ ≤ εpot (δ i ,ξi ) 
' '⎪ min ε (δ i ,ξi ) ⎪


Lower bound ⎪⎩ δi 
' K.A. pot ⎪⎭ Upper bound


ε = 
11 P2 − ε = − 

11 P2 
com com48k 48k 

ε pot (ξ0 ,δ1) = − 
11 P2 

48k 

At the solution to the elasticity problem, the upper and lower bound coincide 
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Another example 

Approximate solution for coupled 
beam-truss problem 

13 

Rigid boundary 

Step-by-step approach 

•	 Step 1: Determine K.A. displacement field (for 
approximation, find appropriate assumed displacement 
field) 

•	 Step 2: Express work balance – find ε pot / ε com 

•	 Step 3: Find min of ε pot / ε com 

•	 Step 4: Determine displacement field, forces etc. 

•	 Solution is approximation to actual solution 14 

Minimum potential energy approach 

Step 1: Assume K.A. displacement field 
21 32 4 

ξ z (x;α , β ) = β +α⎜
⎛ x 

⎟
⎞ 

⎝ 3L ⎠N1 N3 N4N2 

(approximation of the actual solution…) L L L 

δ1 

Elastic beam 

x δ2 δ3 
δ4 

δ1 
δ2 δ δ4P 

β	ξ == )0(xz 

ξ (xz αβ +== )3L 

3 

ξz ξ 0 

15	 16 
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Minimum potential energy approach 

Displacement of the four truss members 

δ1 = ξ z (x = 0) = β


δ 2 = ξ z (x = L) = β +
α

9 2

⎛ x ⎞ 
z(*) δ 3 = ξ z (x = 2L) = β +

4 α
ξ (x;α , β ) = β +α

⎝
⎜

3L ⎠
⎟ 

9

δ 4 = ξ z (x = 3L) = β +α


ξ0 = δ 4
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Minimum potential energy approach 
Step 2: Page 215 in manuscript 
Total free energy of a beam: (chapter 5) 

3L h / 2 b / 2 1 0 0 2ψ B = ∫ ∫  ∫  E(ε xx +ϑy z) dydzdx
2 x=0 z=−h / 2 y=−b / 2 

with: ε 0 = 0 (no displacement in the x-direction) xx 

ϑ 0 = −
∂2ξ z = −

2α (curvature can be calculated from 
y ∂x 2 9L2 the assumed displacement field) 

ψ B = 
E 4α 2

4 

3L h / 2 b / 2 

z 2dydzdx ψ B (α , β ) = 
bh3E 

3 
α 2∫ ∫  ∫  2 81L 

2
1:= Bk

162L x=0 z=−h / 2 y=−b / 2 

“spring constant” 

Minimum potential energy approach 

ψ B (α ) = 
1 kBα

2 

2 
Total free energy: 1 2

Sum of free energies of four trusses… ψ i = kδ i2 

ψ (α , β ) =ψ B (α ) + ∑ψ i (α , β ) 
i=1..4 

ψ (α , β ) = 
1
2 

kBα
2 +

1
2 

k⎜
⎝
⎜
⎛
β 2 +

⎝
⎜
⎛β +

α 
9 ⎠
⎟
⎞

2 

+
⎝
⎜
⎛β +

4
9 

α 

⎠
⎟
⎞

2 

+ (β +α )2 

⎟
⎠
⎟
⎞ 

External work W = F (α + β ) 
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Minimum potential energy approach 

ε pot (α , β ) = 
2
1 kBα

2 +
2
1 k⎜

⎝
⎜
⎛
β 2 + ⎜

⎝
⎛β +

α 
9 
⎟
⎠
⎞

2 

+ ⎜
⎝
⎛β +

4
9 

α
⎟
⎠
⎞

2 

+ (β +α )2 

⎟
⎠
⎟
⎞ 
− F (β +α ) 

min(ε (α , β ))Step 3: 
α ,β pot 

How to find minimum of this function? 

Take partial derivatives, and set each to zero 

20 
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Minimum potential energy approach 

∂
∂
α 
⎜
⎜
⎛ 1

2 
kBα 2 + 

1
2 

k⎜
⎛
⎜β 2 + ⎛

⎝
⎜β + 

α 
9 
⎞
⎠
⎟ 

2 

+ ⎛
⎝
⎜β + 

4
9 

α ⎞
⎠
⎟ 

2 

+ (β +α )2 ⎟
⎞
⎟ − F (β +α )⎟⎟

⎞ 
= 0 

⎝ ⎝ ⎠ ⎠ 

∂
∂
β 
⎜
⎛
⎜
⎝ 

1
2 

kBα 2 + 
1
2 

k⎜
⎛
⎜
⎝
β 2 + ⎛

⎝
⎜β + 

α 
9 
⎞
⎠
⎟ 

2 

+ ⎛
⎝
⎜β + 

4
9 

α ⎞
⎠
⎟ 

2 

+ (β +α )2 ⎟
⎞
⎟
⎠ 
− F (β +α )⎟

⎞
⎟
⎠ 
= 0 

Results in a system of linear equations: 

⎛ 98 14 ⎞
−1 

⎛ 98 14 ⎞ ⎛α ⎞ ⎜ kB + 
81 

k 
9 

k ⎟ ⎛ F ⎞⎜kB + k k ⎟⎛α ⎞ ⎛ F ⎞ ⎜⎜ ⎟⎟ = ⎜ ⎟ ⎜⎜ ⎟⎟⎜ 14
81 9 ⎟⎜⎜β ⎟

⎟ = ⎜⎜F ⎟
⎟ ⎝β ⎠ ⎜⎜ 

14 k 4k ⎟⎟ ⎝ F ⎠ 
⎜⎜ k 4k ⎟⎟⎝ ⎠ ⎝ ⎠ ⎝ 9 ⎠

⎝ 9 ⎠


⎛ 99F ⎞


Step 4: Based on solution, determine ⎛α ⎞ ⎜
⎜ 

2(81kB + 49k ) ⎟
⎟ 

displacement field δ i (from (*)), then ⎝
⎜⎜β ⎠

⎟⎟ = ⎜ F (81kB − 28k ) ⎟ 
forces: Ni = kδ i ⎝

⎜ 4k(81kB + 49k )⎠⎟ 21 
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