1.050 Engineering Mechanics |

Lecture 29
Energy bounds in 1D systems

Examples and applications

1.050 — Content overview

I. Dimensional analysis

1. On monsters, mice and mushrooms Lectures 1-3
2. Similarity relations: Important engineering tools Sept.
1. Stresses and strength
3. Stresses and equilibrium Lectures 4-15
4. Strength models (how to design structures,
foundations.. against mechanical failure) Sept./Oct.

Ill. Deformation and strain

5. How strain gages work?
6. How to measure deformation in a 3D Lectures 16-19
structure/material? Oct.
IV. Elasticity
;. slaristl:izlt?]/ TadiL—dllnrnstrlestsie; and deformation Lectures 20-31
. ariational methods in elasticity Oct./Nov.
V. How things fail — and how to avoid it
9. Elastic instabilities
10.  Plasticity (permanent deformation) Lectures 32-37 )
11, Fracture mechanics Dec.

1.050 — Content overview

|. Dimensional analysis

II. Stresses and strength
Ill. Deformation and strain
IV. Elasticity

Lecture 23: Applications and examples

Lecture 24: Beam elasticity

Lecture 25: Applications and examples (beam elasticity)

Lecture 26: ... cont'd and closure

Lecture 27: Introduction: Energy bounds in linear elasticity (1D system)
Lecture 28: Introduction: Energy bounds in linear elasticity (1D system), cont’d
Lecture 29: 1D examples

Lecture 30: Generalization to 3D

V. How things fail —and how to avoid it
Lectures 32 to 37

Example system: 1D truss structure

Rigid boundary
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Minimum potential energy approach

Conditions for
kinematically admissible
(K.A.): Deformation
must be compatible w/ (

rigid bar _ (1)

Approximation
to solution
(K.A)

Consider two kinematically admissible (K.A.)
displacement fields

5=6/=5=4

< !
I ©

Actual solution 8, =8+ %(50 -4,)

Prescribed force
Unknown
displacement

4
5=6+36-4)

5

Minimum potential energy approach

‘gpot(di 150) = l//(é] )_ P§O < ‘//(é]) - P§0 = gpot(dillé(l))

Potential energy of actual solution is always smaller than the solution
to any other displacement field

Therefore, the actual solution realizes a minimum of the potential
energy:

(816 = N 54(6,,)

To find a solution, minimize the potential energy for a selected choice
of kinematically admissible displacement fields

We have not invoked the EQ conditions! 6

Minimum potential energy approach

@
Approximation 85=6,56,=E& ( ')__ 1 PZ
to solution e & (o) = Bk
(K.A)
5 > is larger than
5 )
. 2
Actual solution 5,=6,+7(&4-0) 11
3 gpot(éolé‘l):_ipz
4 48k
5=0+3(6-9)

Minimum complementary energy approach

Conditions for statically
admissible (S.A.)

N;+N,+N; =R ~

Consider two statically admissible force fields

. , 1)
3N, +N,-N,=0 N, N
Approximation N1', N;
to solution
Still S.A.
< R &
N 2
v N Nyon —1/12R
Actual
& solution N, =1/3R
Prescribed (obtained in
displacement lecture 20) ¢ Ng= 7/12R
Unknown force R &, o




Minimum complementary energy approach

Minimum complementary energy approach

* d * B d i ' '
gcom(NiiR):l//(Ni)_éoRSl//(Ni)_goR :gcom(Ni’R) N N, (1)
1 2
Approxi_mation Nll, N; 1
Complementary energy of actual so_lution is always smaller than the tsotiﬁoshl]z?n Ecom (R' ) == k(fg )2
solution to any other displacement field 5
Therefore, the actual solution realizes a minimum of the R §(;j
complementary energy: @ > i larger than
- No N Ny —1/12R
gcom(Ni 1R): min ‘gcom(NilR) ACt“?" N. =1/3R
NiS.A. solution 2 12 ( d )
(obtained in Ecom (Rv Nl) =-—k Cfo
lecture 20) ¢ Na=7/12R 1
To find a solution, minimize the complementary energy for a selected R §o
choice of statically admissible force fields
We have not invoked the kinematics of the problem! ° 1
Combine: Upper/lower bound Combine: Upper/lower bound
Treat this BC with complementary energy approach I(lnsai( (_ gcom (N i" R))
—&m(N;,R) < isequal to <&ul0:8)

gcom(Nl) = W*(N|)_éﬁd\R
=0

£, (N,) = i(lsz — 2PN, + P?)

Prescribed force 4k
Unknown displacement
0&,0m(N;) 1 1
Findmin: ——@mx 17 -0 N, =—P— &g =—P
ind min aNl 1 12 48k
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min &,,(5,,&)
5 KA.

Lower bound Upper bound

e e 11
©m 48k com 48k
11
8Dor(§0151) = _48k Pz

At the solution to the elasticity problem, the upper and lower bound coincide




Another example

Approximate solution for coupled
beam-truss problem

13

Step-by-step approach

Step 1. Determine K.A. displacement field (for
approximation, find appropriate assumed displacement
field)

Step 2: Express work balance —find  &yq / €co
Step 3: Find min of &, / &com

Step 4: Determine displacement field, forces etc.

Solution is approximation to actual solution 14

Rigid boundary

§ Elastic beam v
z
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Minimum potential energy approach

Step 1: Assume K.A. displacement field

o xY
;(x,a,ﬂ)-ﬂw(sLj

(approximation of the actual solution...)

) 0, S, S,

|
£(x=0)=p |
£(x=3L)=f+a

16




Minimum potential energy approach

Displacement of the four truss members

(6,=£(x=0)=p

G =&(x=)=p+g

. R
0 < 53:§Z(x:2L):,8+ga 3L

5,=&(x=31)=f+a
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Minimum potential energy approach

Step 2: Page 215 in manuscript
Total free energy of a beam: (chapter 5)

3L h/2 b/2 1 )
Wy = J. 'f 'f fE(st +L932) dydzdx

x=0 z=—h/2 y=-b/2

with: ESX =0 (no displacement in the x-direction)
2
30 - _ 0 égz - _ 2a (curvature can be calculated from
y 6X2 9 L2 the assumed displacement field)
E 46!2 3L h/2 b/2 bhaE
Ve =% a1l J' 2°dydzdx  wg(a, B) = 620" a?
x=0 z=—h/2 y=-h/2 \ )
“spring constant” = % kB

Minimum potential energy approach

2

1
ye(a)= 9 kgax

Total free energy: 1
Sum of free energies of four trusses...  ¥; = E k5,2

y(a, B)=ys(@)+ 2 wi(a fB)

i=1.4

w(a,ﬂ):%ksaz +%k[ﬂ2 +(IB+%) +[ﬂ+4§j +(ﬂ+a)2]

External work

W =F(a+2)

19

Minimum potential energy approach

() = g +%k[ﬂ2 o(p+2) +(s+%) +(ﬂ+a)zj— F(g+a)

|

Step 3: TVLU(Spm(aﬁ))

How to find minimum of this function?

Take partial derivatives, and set each to zero

20




Minimum potential energy approach

%{%ksaz +%k{ﬁ2 +[ﬂ+%}2 +(ﬁ+4?a)2 +( +a)zJ—F(ﬂ+a)J:O

i{ékﬂaz +1k[ﬂz +(ﬂ+%)2+[ﬂ+%)2 +(ﬂ+a)2]—F(ﬂ+a)J=0

B2 2
Results in a system of linear equations:
98, 14,)"
ks +—k =k
K + 8y 14, . a)_|™® T8 9 F
Bl 9 “jz[ ) s 1w | E
W o |8 \F 9
9
99F
Step 4: Based on solution, determine a _ 2(81ka+49k)
displacement field &, (from (*)), then B) | F(Blk, —28k)
4k (81k, + 49k) 21

forces: N, =K,




