
1.050 Engineering Mechanics 

Lecture 24: 

Beam elasticity – derivation of governing 


equation
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1.050 – Content overview

I. Dimensional analysis 

1.	 On monsters, mice and mushrooms 
2.	 Similarity relations: Important engineering tools 

II. Stresses and strength 
3.	 Stresses and equilibrium 
4.	 Strength models (how to design structures, 

foundations.. against mechanical failure) 

III. Deformation and strain 
5.	 How strain gages work? 
6.	 How to measure deformation in a 3D 


structure/material?


IV. Elasticity 
7.	 Elasticity model – link stresses and deformation 
8.	 Variational methods in elasticity 

V.  How things fail – and how to avoid it 
9.	 Elastic instabilities 
10.	 Plasticity (permanent deformation) 
11.	 Fracture mechanics 

Lectures 1-3 
Sept. 

Lectures 4-15 
Sept./Oct. 

Lectures 16-19 
Oct. 

Lectures 20-31 
Oct./Nov. 

Lectures 32-37 
Dec. 2 
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1.050 – Content overview

I. Dimensional analysis 

II. Stresses and strength 

III. Deformation and strain 

IV. Elasticity 
Lecture 20: Introduction to elasticity (thermodynamics)

Lecture 21:  Generalization to 3D continuum elasticity

Lecture 22:  Special case: isotropic elasticity

Lecture 23: Applications and examples

Lecture 24:  Beam elasticity 
Lecture 25: Applications and examples (beam elasticity)

Lecture 26: … cont’d and closure

…


V. How things fail – and how to avoid it 
3 

Goal of this lecture 

•	 Derive differential equations that can be solved to determine stress, 
strain and displacement fields in beam 

•	 Consider 2D beam geometry: 

z 

x 

+ boundary conditions (force, clamped, moments…) 

•	 Approach: Utilize beam stress model, strain model for beams and 
combine with isotropic elasticity 
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Stress 

( ) = ⎜
⎛σ 

0 
xx 

0
0 σ xz ⎟

⎞ 
σ ij	 ⎜ 0 ⎟


⎜σ 0 0 ⎟
⎝ xz ⎠ 
Shape of stress tensor 
for 2D beam problem 

N = ∫σ xxdS Qz = ∫σ xzdS 
S S 

M y = ∫ zσ xxdS 
S 

dM y =Qz 

d 2 M y = − f zdx dx2 

dN 
= − f

dx x 

Isotropic elasticity: σ = ⎜K G ⎟ε 1+ 2Gε 5 
⎝ 3 ⎠

v 

Strain 
Navier-Bernouilli beam model 

ε = ε 0 +ϑ 0 zxx	 xx y 

0 d 2ξz 
0 

ϑy = − 2 Curvature
dx 

dξ 0 

ε 0 = x Axial strain xx dx 

Thus: 
dξ 0 d 2ξ 0 

x zε xx = − 2 
z

dx dx 

Strain completely determined from 
displacement of beam reference axis 

⎛ −
2 ⎞ 

Derivation of beam constitutive equation in 3-step 
approach 

Section number below corresponds to section numbering used in class 

Step 1: Consider continuum scale alone (derive a relation between stress and 
strain for the particular shape of the stress tensor in beam geometry) 
2.1) 

Step 2: Link continuum scale with section scale (use reduction formulas) 
2.2) 

Step 3: Link section scale to structural scale (beam EQ equations) 
2.3) 
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Overview 

Continuum 
scale 

Section 
scale 

Structural 
scale 

εσ , yz MQN ,, )(),(),( 
),(),(),( 

xxx 

xMxQxN 

zxy 

yz 

ξξω 

Reminder: 

Rotation (slope) 
0 
zξ 

slope 
z 

x 

Curvature (=first derivative of rotation) 

ω0 
y = − 

dξz 
0 

ϑy 
0 = − 

d 2ξ 
2 
z 
0 

= 
dωy 

0 

7dx dx dx 

x 
F 

⎟
⎠

⎜
⎝ 000 

2.1) Step 1 (continuum scale) 
⎛σ xx 0 0⎞ 

z 
Consider a beam in 
uniaxial tension: ( )σ ij = ⎜

⎜ 
0 0 0⎟

⎟ 

σ xx = ⎜
⎛ K − 

2 G ⎟
⎞(ε xx + ε yy + ε zz )+ 2Gε xx 

(1) 
⎝ 3 ⎠ 

3 unknowns, 2 (2)σ yy = ⎜
⎛ K − 

2 G ⎟
⎞(ε xx + ε yy + ε zz )+ 2Gε yy = ! 0equations; can ⎝ 3 ⎠eliminate one 


variable and obtain 
σ zz = 

⎝
⎜
⎛ K − 

2
3 

G 
⎠
⎟
⎞(ε xx + ε yy + ε zz )+ 2Gε zz = 

! 0 (3)
relation between 2 
remaining ones 

Eqns. (2) and (3) provide relation between         ε xx and ε yy ,ε zz : 
1 3K − 2Gε = ε = − ε = −νεyy zz xx xx2 3K + G 

8 
=:ν Poisson’s ratio 
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Physical meaning “Poisson’s effect” 

•	 The ‘Poisson effect’ refers to the fact that beams 
contract in the lateral directions when subjected to 
tensile strain 

ε = ε = −νεyy zz xx 

d1 

d2 d2 = (1+ ε yy )d1 = (1−νε xx ) 
9 

9KG
From eq. (1) (with Poisson relation): σ = εxx xx3K +G 

=: E Young’s modulus 

xxxx Eεσ = 

This result can be generalized: In bending, the shape of the stress tensor is 
identical, for any point in the cross-section (albeit the component σzz typically 
varies with the coordinate z) 

Thus, the same conditions for the lateral strains applies 
⎛σ xx (z) 0 0⎞ 

( ) = ⎜ 0 0 
⎟ 

Therefore: We can use the same formulas! σ ij ⎜ 0⎟ 
⎜ ⎟
⎝ 0 0 0⎠ 
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2.2) Step 2 (link to section scale) 


Now: Plug in relation σ xx = Eε xx into reduction formulas


Consider that ε xx = 
d
dx 

ξx 
0 

− 
d
dx 

2ξ 
2 
z 
0 

z and thus σ xx = E⎜⎜
⎝

⎛ d
dx 

ξx 
0 

− 
d
dx 

2ξ 
2 
z 
0 

z ⎟⎟
⎠

⎞ 

Results in: 
Assume: E constant over S =0 

∫ 
S 

⎜⎜
⎝

⎛ d
dx 

ξx 
0 d

dx 

2ξ 
2 
z 
0 

⎟⎟
⎠

⎞ N = E 
d
dx 

ξx 
0 

∫ 
S 

dS − E 
ξ 

dx 

d 2 

2 
z 
0 

∫ 
S 

zdSN = E − z dS 

=0 

M y = ∫ 
S

E⎜⎜
⎝

⎛ d
dx 

ξx 
0 

z − 
d
dx 

2ξ 
2 
z 
0 

z2 

⎟⎟
⎠

⎞
dS M y = E 

dx 

dξx 
0 

∫ 
S 

zdS − E 
d
dx 

2ξ 
2 
z 
0 

∫ 
S

z2dS 

= I 
Finally: N = ES 

dξx 
0 

M y = −EI d 2ξ 
2 
z 
0 

Area 

dx dx moment 
of inertia 

2.3) Step 4 (link to structural scale) 

Beam EQ equations: Beam constitutive equations: 

d 4ξ 0 
zM = −EI = − fy 4 zdxd 2 M y = − f zdx2 

d 4ξ 0 fz z= 
with: dx4 EI 

z 0dN 
= − f x 

M y = −EI d
dx 

2ξ 
2

0 

d 2ξx = − 
f x 

2dx 
dξ 0 dx ES 

xN = ES 
dx 
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Beam bending elasticity 
Governed by this differential equation: 

d 4ξ 0 fz z= 
dx4 EI 

Integration provides solution for displacement 

Solve integration constants by applying BCs 

Note: 

E = material parameter (Young’s modulus) 

I = geometry parameter (property of cross-section) 

f = distributed shear force z 

How to solve?  Lecture 25 13 
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