1.017/1.010 Class 23
Analyzing Regression Results

Analyzing and Interpreting Regression Results
Least-squares estimation methods provide a way to fit linear regression
models (e.g. polynomial curves) to data. Once a model is obtained it is
useful to be able to quantify:

1. The significance of the regression
2. The accuracy of the parameter estimates and predictions

The significance of the regression can be analyzed with an ANOVA

approach. Estimation and prediction accuracy are related to the means
and variances of the regression parameters.

Regression ANOVA

The regression term is not significant (it does not explain any of the y
variability) if the following hypothesis is true:

HO: E[y(x)] = h(x)4 = a)

That is, the mean of y is a constant that does not depend on the
independent variable x.

This hypothesis can be tested with a statistic based on the following sums-
of-squares:
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SST measures the y variability if the regression model is not used.

SSE measures the y variability if the regression model is used.
SSR measures the y variability explained by the regression model.



The statistic used to test significance of the regression is the ratio of the
mean sums of squares for regression and error:
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MSE — SSE
n—m
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E[MSR] depends on the magnitudes of the regression coefficients ay, ... a,

while E[MSE] does not. Therefore, their ratio is sensitive to the magnitude
of these coefficients.

When HO is true # follows an F distribution with degree of freedom

parameters vg= m-1 and vg=n-m. The rejection region and p values are
derived from this distribution. If #is large and p is small, HO is rejected
and the regression is significant.

ANOVA Table for Linear Regression:

|Source |SS |df ’MS F Ip
Regression  [SSR |vg=m -1 |MSR= [Ty = p=

SSRNVg  |MSR/MSE — [1-Fg g ve(F)
Error SSE |vg=n-m |MSR=

SSR/VE
Total SST vr=n-1 |

The R-squared coefficient is:

R2 SSR
SST

R’ is often used to describe the quality of a regression fit. R*=1is a
perfect fit.

The internal MATLAB function regress provides the R?, T, and p values
obtained from the regression ANOVA.

Properties of Regression Parameters and Predictions



The estimates of parameters a,, a,, ..., a,, Obtained in a regression analysis
have the general form:

A=[HH 'H'Y =Wy

n
j=1

So the estimates are linear combinations of the measurements [y, y; ....
»ya] , with each measurement weighted by a coefficient W that depends
only on the known x values [x; x; .... x,]. In this respect, regression
parameter estimates are similar to the sample mean, which is also a linear
combination of measurements.

Each regression parameter estimate is a random variable with its own
CDF. Its mean and variance may be found from the estimation and
measurement equations and the assumed statistical properties of the
random residuals e;...E[e] = 0, Var[e] = 0.>, which are assumed to be
independent :

E[&l] =4a; , i=1l.m

Varla) = o2 L HY |y = s2 0 HT 3 i=1m

i

The unknown residual error variance o,” can be approximated by:

1 < L .
ez zsez =MSE = Z[yi —(al +ayx; +a3xl-2)]2

n—m
i=1

The least-squares regression parameters are unbiased and consistent .

The prediction derived from the regression parameters is also a random
variable that is a linear combination of the measurements. Example for
quadratic regression model discussed in class:

P(x) = h(x)A = ) + drx +drx> h(x)z[l X x2J

Mean and variance of this prediction at any x are:

E[H(x)] = E[h(x)A] = h(x)A = E[p(x)] = a; + arx + ar x>



Var[§(x)] = h(x)o 2[H' H]™ h'(x) ~ h(x)s2[H' H] ™ 1 (x)

These results also apply for other A(x).

Regression Parameter Confidence Intervals

When the sample size n is large the regression parameters are
approximately normally distributed and the CDF of each estimate is
completely defined by its mean and variance:

Fi, ) ~ N(ELag), Varla; ) = N(ag, o2 {HHT )

The procedure for deriving large sample confidence intervals
and for testing hypotheses is the same as for the sample
mean.

The 1-a two-sided large sample confidence interval is:
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where z;, and zy are obtained from the unit normal distribution (z;,=-1.96
and zy= +1.96 for a = 0.05):
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When the sample size n is small and the residual errors are normally
distributed the regression parameters are t distributed with v=n - m
degrees of freedom. The two-sided confidence intervals are computed as
above, with F; replaced by F;,..

The regression coefficient confidence intervals are evaluated by the
internal MATLAB function regress.

Regression Prediction Confidence Intervals

When the sample size n is large the regression prediction is
approximately normally distributed with a CDF completely defined by its
mean and variance:



F[5(0]~ NEZXL,  Varl (0] = NIh(x) A, h(x)o2[H' HT™ 1 (x)]

The 1-a two-sided large sample confidence interval is:

$(x) = 2y SD[H(X)] < ¥(x) < H(x) = 2, SD[H(X)]
$(x) =z Th(x)s2 TH HT e (0]Y 2 < p(x) < 5(x) = 2 [h(x)s2 [H' H] Vi ()] 2

where z;, zy, and the prediction standard deviation are obtained from the
equations given earlier and o.%is approximated by s.” .

When the sample size n is small and the residual errors are normally
distributed the regression prediction is t distributed with v=r - 2 degrees
of freedom. The two-sided confidence interval is computed as in the large
sample case, with F; replaced by F;,..

The regression prediction confidence interval depends on x and widens for
x far from the values [x), x, .... x,] corresponding to measurements. This
interval is evaluated by the internal MATLAB function regress.
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