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1.017/1.010 Class 23 
Analyzing Regression Results 

 

Analyzing and Interpreting Regression Results  

Least-squares estimation methods provide a way to fit linear regression 
models (e.g. polynomial curves) to data.  Once a model is obtained it is 
useful to be able to quantify:  

1.  The significance of the regression  
2.  The accuracy of the parameter estimates and predictions 

The significance of the regression can be analyzed with an ANOVA 
approach.  Estimation and prediction accuracy are related to the means 
and variances of the regression parameters. 

Regression ANOVA  

The regression term is not significant (it does not explain any of the  y 
variability) if the following hypothesis is true:  

H0: E[y(x)] = h(x)A = a1 

That is, the mean of y is a constant that does not depend on the 
independent variable x.  

This hypothesis can be tested with a statistic based on the following sums-
of-squares:  
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SSE-SSTSSR =  

SST  measures the y variability if the regression model is not used.  
SSE  measures the y variability if  the regression model is used.  
SSR  measures the y variability explained by the regression model.  
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The statistic used to test significance of the regression is the ratio of the 
mean sums of squares for regression and error:  
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E[MSR] depends on the magnitudes of the regression coefficients a2, ... am 
while E[MSE] does not.  Therefore, their ratio is sensitive to the magnitude 
of these coefficients.   

When H0 is true FR  follows an F distribution with degree of freedom 
parameters νR= m-1 and νE = n-m.  The rejection region and p values are 
derived from this distribution.  If FR is large and p is small, H0 is rejected 
and the regression is significant.  

ANOVA Table for Linear Regression:  
   

Source SS df MS F p 
Regression SSR νR =m -1 MSR=  

SSR/νR 
FR =   
MSR/MSE 

p =  
1-FF ,νR,νE(F ) 

Error SSE νE  = n-m MSR=  
SSR/νE 

    

Total SST νT  = n -1       

The R-squared coefficient is:  

SST
SSRR2 =  

R2 is often used to describe the quality of a regression fit.  R2 = 1 is a 
perfect fit.  

The internal MATLAB function regress provides the R2, FR, and p values 
obtained from the regression ANOVA. 

Properties of Regression Parameters and Predictions  
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The estimates of parameters a1, a2,…, am obtained in a regression analysis 
have the general form:  
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So the estimates are linear combinations of the measurements  [y1  y2  ....  
yn] , with each measurement weighted by a coefficient Wij that depends 
only on the known x values [x1  x2  ....  xn].  In this respect, regression 
parameter estimates are similar to the sample mean, which is also a linear 
combination of measurements.  

Each regression parameter estimate is a random variable with its own 
CDF.  Its mean and variance may be found from the estimation and 
measurement equations and the assumed statistical properties of the 
random residuals ei...E[ei] = 0, Var[ei] = σe

2 , which are assumed to be 
independent :  
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The unknown residual error variance σe
2 can be approximated by:  
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The least-squares regression parameters are unbiased and consistent .  

The prediction derived from the regression parameters is also a random 
variable that is a linear combination of the measurements.  Example for 
quadratic regression model discussed in class:: 
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 Mean and variance of this prediction at any x are:  
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These results also apply for other h(x). 

Regression Parameter Confidence Intervals  

When the sample size n is large the regression parameters are 
approximately normally distributed and the CDF of each estimate is 
completely defined by its mean and variance:  
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The procedure for deriving large sample confidence intervals 
and for testing hypotheses is the same as for the sample 
mean.  

The 1-α two-sided large sample confidence interval is:  

{ } { } 2/112/11 ]'[ˆ]'[ˆ

]ˆ[ˆ]ˆ[ˆ

iieLiiiieUi

iLiiiUi

HHszaaHHsza

SDzaaSDza

−− −≤≤−

−≤≤− aa

 

where zL and zU are obtained from the unit normal distribution (zL= -1.96 
and zU= +1.96 for a = 0.05):  
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When the sample size n is small and the residual errors are normally 
distributed the regression parameters are t distributed with ν= n - m 
degrees of freedom.  The two-sided confidence intervals are computed as 
above, with Fz replaced by Ft,ν..  

The regression coefficient confidence intervals are evaluated by the 
internal MATLAB function regress. 

Regression Prediction Confidence Intervals  

When the sample size n is large the regression prediction is 
approximately normally distributed with a CDF completely defined by its 
mean and variance:  
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The 1-α  two-sided large sample confidence interval is:  
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where zL, zU, and the prediction standard deviation are obtained from the 
equations given earlier and σe

2is approximated by se
2 .  

When the sample size n is small and the residual errors are normally 
distributed the regression prediction is t distributed with ν= n - 2 degrees 
of freedom.  The two-sided confidence interval is computed as in the large 
sample case, with Fz replaced by Ft,ν..  

The regression prediction confidence interval depends on x and widens for 
x far from the values [x1, x2  ....  xn] corresponding to measurements.  This 
interval is evaluated by the internal MATLAB function regress. 
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