1.017/1.010 Class 23 Analyzing Regression Results

Analyzing and Interpreting Regression Results

Least-squares estimation methods provide a way to fit linear regression models (e.g. polynomial curves) to data. Once a model is obtained it is useful to be able to quantify:

- 1. The significance of the regression
- 2. The accuracy of the parameter estimates and predictions

The significance of the regression can be analyzed with an **ANOVA** approach. Estimation and prediction accuracy are related to the **means and variances** of the regression parameters.

Regression ANOVA

The regression term is not significant (it does not explain any of the y variability) if the following hypothesis is true:

H0:
$$E[y(x)] = h(x)A = a_1$$

That is, the mean of y is a constant that does not depend on the independent variable x.

This hypothesis can be tested with a statistic based on the following sumsof-squares:

$$SST = \sum_{i=1}^{n} (y_i - m_y)^2 ; m_y = \frac{1}{n} \sum_{i=1}^{n} y_i$$

SSE =
$$[Y - H\hat{A}]'[Y - H\hat{A}]$$

= $\sum_{i=1}^{n} \left[y_i - \left(\hat{a}_1 + \hat{a}_2 x_i + \hat{a}_3 x_i^2 \right) \right]^2$

$$SSR = SST - SSE$$

SST measures the *y* variability if the regression model **is not** used.

SSE measures the y variability if the regression model **is** used.

SSR measures the *y* variability explained by the regression model.

The statistic used to test significance of the regression is the ratio of the mean sums of squares for regression and error:

$$MSR = \frac{SSR}{m-1}$$

$$MSE = \frac{SSE}{n - m}$$

$$F_R(MSR, MSE) = \frac{MSR}{MSE}$$

E[MSR] depends on the magnitudes of the regression coefficients $a_2, ... a_m$ while E[MSE] does not. Therefore, their ratio is sensitive to the magnitude of these coefficients.

When H0 is true \mathcal{F}_R follows an **F distribution** with degree of freedom parameters v_R = m-1 and v_E = n-m. The rejection region and p values are derived from this distribution. If \mathcal{F}_R is large and p is small, H0 is rejected and the regression is significant.

ANOVA Table for Linear Regression:

Source	SS	df	MS	\mathcal{F}	p
Regression	SSR	1.		$F_R =$	$p = \frac{1}{2} \int_{-\infty}^{\infty} f(x) dx$
			SSR/v_R	MSR/MSE	$1-F_{\mathbf{F},\nu R,\nu E}(\mathbf{F})$
Error	SSE	$v_E = n-m$	MSR =		
			SSR/v_E		
Total	SST	$v_T = n - 1$			

The *R*-squared coefficient is:

$$R^2 = \frac{SSR}{SST}$$

 \mathbb{R}^2 is often used to describe the quality of a regression fit. $\mathbb{R}^2=1$ is a perfect fit.

The internal MATLAB function regress provides the R^2 , \mathcal{F}_R , and p values obtained from the regression ANOVA.

Properties of Regression Parameters and Predictions

The estimates of parameters a_1 , a_2 ,..., a_m obtained in a regression analysis have the general form:

$$\hat{\mathbf{A}} = [H'H]^{-1}H'\mathbf{Y} = W\mathbf{Y}$$

$$\hat{\mathbf{a}}_i = \sum_{i=1}^n W_{ij}\mathbf{y}_j \; ; \; i = 1...m$$

So the estimates are **linear combinations** of the measurements $[y_1 \ y_2 \ \ y_n]$, with each measurement weighted by a coefficient W_{ij} that depends only on the known x values $[x_1 \ x_2 \ \ x_n]$. In this respect, regression parameter estimates are similar to the sample mean, which is also a linear combination of measurements.

Each regression **parameter estimate** is a random variable with its own CDF. Its mean and variance may be found from the estimation and measurement equations and the assumed statistical properties of the random residuals $e_i...E[e_i] = 0$, $Var[e_i] = \sigma_e^2$, which are assumed to be independent:

$$E[\hat{a}_i] = a_i \; ; \; i = 1...m$$

$$Var[\hat{a}_i] = \sigma_e^2 \{ H'H \}^{-1} \}_{ii} \approx s_e^2 \{ H'H \}^{-1} \}_{ii} \; ; \; i = 1...m$$

The unknown residual error variance σ_e^2 can be approximated by:

$$\sigma_e^2 \approx s_e^2 = MSE = \frac{1}{n-m} \sum_{i=1}^n \left[y_i - \left(\hat{a}_1 + \hat{a}_2 x_i + \hat{a}_3 x_i^2 \right) \right]^2$$

The least-squares regression parameters are unbiased and consistent.

The **prediction** derived from the regression parameters is also a random variable that is a linear combination of the measurements. Example for quadratic regression model discussed in class:

$$\hat{y}(x) = h(x)\hat{A} = \hat{a}_1 + \hat{a}_2 x + \hat{a}_2 x^2$$
; $h(x) = \begin{bmatrix} 1 & x & x^2 \end{bmatrix}$

Mean and variance of this prediction at any x are:

$$E[\hat{y}(x)] = E[h(x)\hat{A}] = h(x)A = E[y(x)] = a_1 + a_2x + a_2x^2$$

$$Var[\hat{y}(x)] = h(x)\sigma_e^2[H'H]^{-1}h'(x) \approx h(x)s_e^2[H'H]^{-1}h'(x)$$

These results also apply for other h(x).

Regression Parameter Confidence Intervals

When the sample size n is **large** the regression parameters are approximately normally distributed and the CDF of each estimate is completely defined by its mean and variance:

$$F_{\hat{a}_i}(\hat{a}_i) \sim N(E[\hat{a}_i], Var[\hat{a}_i]) = N(a_i, \sigma_e^2 \{H'H]^{-1}\}_{ii}$$

The procedure for deriving large sample confidence intervals and for testing hypotheses is the same as for the sample mean.

The 1- α two-sided large sample confidence interval is:

$$\begin{aligned} \hat{a}_i - z_U SD[\hat{a}_i] &\leq a_i \leq \hat{a}_i - z_L SD[\hat{a}_i] \\ \hat{a}_i - z_U s_e &\{ [H'H]^{-1} \}_{ii}^{1/2} \leq a_i \leq \hat{a}_i - z_L s_e \{ [H'H]^{-1} \}_{ii}^{1/2} \end{aligned}$$

where z_L and z_U are obtained from the unit normal distribution (z_L = -1.96 and z_U = +1.96 for a = 0.05):

$$z_L = F_z^{-1} \left(\frac{\alpha}{2}\right)$$
 $z_U = F_z^{-1} \left(1 - \frac{\alpha}{2}\right)$

When the sample size n is **small** and the residual errors are **normally distributed** the regression parameters are t **distributed** with v = n - m degrees of freedom. The two-sided confidence intervals are computed as above, with F_z replaced by $F_{t,v}$.

The regression coefficient confidence intervals are evaluated by the internal MATLAB function regress.

Regression Prediction Confidence Intervals

When the sample size n is **large** the regression prediction is approximately normally distributed with a CDF completely defined by its mean and variance:

$$F_{\hat{y}}[\hat{y}(x)] \sim N(E[\hat{y}(x)], \quad Var[\hat{y}(x)]) = N[h(x)A, h(x)\sigma_e^2[H'H]^{-1}h'(x)]$$

The 1- α two-sided large sample confidence interval is:

$$\begin{split} \hat{y}(x) - z_U SD[\hat{\boldsymbol{y}}(x)] &\leq y(x) \leq \hat{y}(x) - z_L SD[\hat{\boldsymbol{y}}(x)] \\ \hat{y}(x) - z_U [h(x) s_e^2 [H'H]^{-1} h'(x)]^{1/2} &\leq y(x) \leq \hat{y}(x) - z_L [h(x) s_e^2 [H'H]^{-1} h'(x)]^{1/2} \end{split}$$

where z_L , z_U , and the prediction standard deviation are obtained from the equations given earlier and σ_e^2 is approximated by s_e^2 .

When the sample size n is **small** and the residual errors are **normally distributed** the regression prediction is t **distributed** with v = n - 2 degrees of freedom. The two-sided confidence interval is computed as in the large sample case, with F_z replaced by $F_{t,v}$.

The regression prediction confidence interval depends on x and widens for x far from the values $[x_1, x_2 \dots x_n]$ corresponding to measurements. This interval is evaluated by the internal MATLAB function regress.

Copyright 2003 Massachusetts Institute of Technology
Copyright 2005 Massachuseus Institute of Technology
Last modified Oct. 8, 2003
Lust moutilea Oct. 0. 2003