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1.010 - Brief Notes # 9 

Point and Interval Estimation of Distribution Parameters 

(a) Some Common Distributions in Statistics 

. 

• Chi-square distribution 

Let Z1, Z2, . . . , Zn be iid standard normal variables. The distribution of 

n

χ2 Z2= n i

i=1


is called the Chi-square distribution with n degrees of freedom. 

E[χ2 
n] = n 

V ar[χ2 
n] = 2n 

Probability density function of χ2 
n for n = 2, 5, 10. 

t distribution • 

Let Z, Z1, Z2, . . . , Zn be iid standard normal variables. The distribution of 

Z 
tn = � �1/2n

1 Z2 
n i 

i=1 

is called the Student’s t distribution with n degrees of freedom. 
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E[tn] = 0 ⎧ ⎨ n
, n > 2 

V ar[tn] = ⎩ 
n − 2 
∞, n ≤ 2 

Probability density function of tn for n = 1, 5, ∞. 
Note: t = N(0, 1).∞ 

F distribution • 

Let W1, W2, . . . ,Wm, Z1, Z2, . . . , Zn be iid standard normal variables. The distribution of 

m
1 W 2

m i 1 χ2


Fm,n = i=1 = m m

n 1
� χ2

1 Z2 n n

n i


i=1 

is called the F distribution with m and n degrees of freedom. 

As n →∞, mFm,n → χm 
2 
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(b) Point Estimation of Distribution Parameters: Objective and Criteria 

. 

•	 Definition of (point) estimator 

Let θ be an unknown parameter of the distribution FX of a random variable X, for example the 

mean m of the variance σ2 . Consider a random sample of size n from the statistical population 

of X, {X1, X2, . . . , Xn}. An estimator Θ of θ is a function Θ(X1, X2, . . . , Xn) that produces a 

numerical estimate of θ for each realization x1, x2, . . . , xn of X1, X2, . . . , Xn. Θ is a random Notice: �
variable whose distribution depends on θ. 

•	 Desirable properties of estimators 

1.	 Unbiasedness: 
Θ is said to be an unbiased estimator of θ if, for any given θ, Esample[Θ� |θ] = θ. The bias b� (θ)Θ

of �Θ is defined as:


b� (θ) = Esample[Θ� θ] − θ
Θ |

2.	 Mean Squared Error (MSE): 
The mean squared error of Θ is the second initial moment of the estimation error e � = Θ� − θ, 
i.e., 

MSE� (θ) = E[(Θ� − θ)2] = b2 (θ) + V ar[Θ� θ]Θ	 � |
Θ

One would like the mean squared error of an estimator to be as small as possible. 

(c) Point Estimation of Distribution Parameters: Methods 

. 

1.	 Method of moments 

Suppose that FX has unknown parameters θ1, θ2, . . . , θr. The idea behind the method of moments is to 

estimate θ1, θ2, . . . , θr so that r selected characteristics of the distribution match their sample values. The


characteristics are often taken to be the initial moments:


µi = E[Xi], i = 1, . . . , r


The method is described below for the case r = 2.
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The first and second initial moments of X are, in general, functions of the unknown parameters, θ1 and 

θ2: 

µ1(θ1, θ2) = E[X|θ1, θ2] = xfX|θ1 ,θ2 
(x)dx 

µ2(θ1, θ2) = E[X2|θ1, θ2] = x2fX|θ1,θ2 
(x)dx 

The sample values of these moments are: 

n1 � 
µ�1 = Xi = X


n i=1


n1 � 
µ�2 = Xi 

2


n i=1


Estimators of θ1 and θ2 are obtained by solving the equations for Θ�1 and Θ�2:


µ1(Θ�1, Θ�2) = µ�1


µ2(Θ�1, Θ�2) = µ�2


This method is often simple to apply, but may produce estimators that have higher MSE than other 
methods, e.g. maximum likelihood. 

Example:


If θ1 = m and θ2 = σ2, then:


µ1 = m and µ2 = m2 + σ2


1 � �nn 1 
µ�1 = Xi = X and µ�2 = Xi 

2


n i=1 n i=1


The estimators m� and σ�2 are obtained by solving:


m = X 

n1 � 
m� 2 + σ�2 = Xi 

2


n i=1


which gives: 

m = X 
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n1 � 2 
σ�2 = Xi 

2 − X

n i=1


n1 � 
= (X1 − X)2


n i=1


Notice that σ�2 is a biased estimator since its expected value is 
n − 1 

σ2 . For this reason, one typically 
n 

uses the modified estimator: 

n1 � 
S2 = 

n − 1 i=1 
(Xi − X)2 

which is unbiased. 

2. Method of maximum likelihood: 

Consider again the case r = 2. The likelihood function of θ1 and θ2 given a sample, L(θ1, θ2| sample), is

defined as:


L(θ1, θ2| sample) ∝ P [sample |θ1, θ2]


Where P is either probability or probability density and is regarded for a given sample as a function of

θ1 and θ2. In the case when X is a continuous variable: 

n

P [sample θ1, θ2] = fX (xi θ1, θ2)|
i=1 

|

The maximum likelihood estimators (Θ�1)ML and (Θ�2)ML are the values of θ1 and θ2 that maximize the 

likelihood, i.e., 

L(θ1, θ2| sample) is maximum for θ1 = (Θ�1)ML and θ2 = (Θ�2)ML 

In many cases, (Θ�1)ML and ( Θ�2)ML can be found by imposing the stationarity conditions: 

∂L[(Θ�1, Θ�2)| sample] 
= 0 and 

∂L[(Θ�1, Θ�2)| sample] 
= 0 

∂Θ�1 ∂Θ�2 

or, more frequently, the equivalent conditions in terms of the log-likelihood: 
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∂(ln L[(Θ�1, Θ�2)| sample]) 
= 0 and 

∂(ln L[(Θ�1, Θ�2)| sample]) 
= 0


∂Θ�1 ∂Θ�2


•	 Properties of maximum likelihood estimators:


As the sample size n →∞, maximum likelihood estimators:

1. are unbiased; 
2. have the smallest possible value of MSE. 

•	 Example: 

For X ∼ N(m, σ2) with unknown parameters m and σ2, the maximum likelihood estimators of the 

parameters are: 

n1	 � σ2 

m� ML = Xi = X ∼ N m, 
n i=1	 n 

n1	 � 
σ�2 = mML)2 

ML (Xi − �
n i=1 

n1	 � σ2 

= 
n i=1 

(Xi − X)2 ∼ 
n

χ2
(n−1) 

Notice that in this case the ML estimators m and σ2 are the same as the estimators produced by 

the method of moments. This is not true in general. 

3.	 Bayesian estimation 

The previous two methods of point estimation are based on the classical statistical approach which 

assumes that the distribution parameters θ1, θ2, . . . , θr are constants but unknown. In Bayesian 

estimation, θ1, θ2, . . . , θr are viewed as uncertain (random variables) and their uncertainty is quantified 

through probability distributions. There are 3 steps in Bayesian estimation: 

Step 1: Quantify initial Step 2: Use sample Step 3: Choose a single 

uncertainty on θ in the information to update value estimate of θ 

form of a prior distribution, uncertainty → posterior 
f �θ distribution, f ��θ 
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The various steps are described below in the order 2, 3, 1. 

Step 2: How to update prior uncertainty given a sample 

Recall that for random variables, 

fθ|X ∝ fθ(θ) fX|θ(x)· 

Here, fθ
� = fθ and fθ

�� = fθ|X . Further, using �(θ|X) ∝ fX|θ(x), one obtains:


f ��(θ) ∝ f �(θ)�(θ|X)
θ θ

Step 3: How to choose �θ 

Two main methods: 

1.	 Use some characteristic of fθ
��, such as the mean or the mode. The choice is rather arbitrary. Note 

that the mode corresponds in a sense to the maximum likelihood, applied to the posterior distribution 

rather than the likelihood. 

2.	 Decision theoretic approach: (more objective and preferable) 

θ by θ�. 
•	 Define a loss function $(�θ|θ) which is the loss if the estimate is �θ and the true value is θ. 

Calculate the expected posterior loss or “Risk” of �θ as: 
R(�θ) = E��[$(�θ θ)] = 

∞ $(�θ θ)fθ
��(θ)dθ
| −∞ |


Choose �θ such that R(�θ) is minimum.• 

• If $(�θ|θ) is a quadratic function of (θ�i − θi), then R(�θ) is minimum for �θ = E��[θ]⎧
⎨0, if �θ = θ

•	 If $(�θ|θ) = ⎩c > 0, if �θ = θ 

, then �θ is the mode of fθ
��. 

Step 1: How to select fθ
�

1.	 Judgementally. This approach is especially useful in engineering design, where subjective judgement 
is often neccessary. This is how subjective judgement is formally incorporated in the decision process. 
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2. Based on prior data e.g. a “sample” of θ’s from other data sets. 

3. To reflect ignorance, “non-informative prior”. 
For example, if θ is a scalar parameter that can attain values from −∞ to +∞, 
then f �(θ)dθ ∝ dθ (“flat”) and f ��(θ) ∝ �(θ| sample) i.e. the posterior reflects only the likelihood. θ θ 

1
If θ > 0, then one typically takes f � (ln θ)d ln θ ∝ d ln θ. In this case, f � .ln θ θ(θ) ∝ 

θ 

4. Conjugate prior. There are distribution types such that if f �(θ) is of that type, then f ��(θ) ∝ f �(θ)�(θ)θ θ θ

is also of the same type. Such distributions are called conjugate distributions. 

Example:


Let:


X ∼ N(m, σ2) with σ2 known. θ = m unknown.


Suppose: f � ∼ N(m�, σ�2)
m 

It can be shown that �(m|X1, . . . , Xn) ∝ density of N(X, σ2/n)


From f �� m�(m| sample), one obtains
m ∝ f �

m�(σ2/n) + Xσ�2 1 1 n 
mf �� ∼ N m�� =

(σ2/n) + σ�2 
,
σ��2 

= 
σ�2 

+ 
σ2 

In this case, f � ∼ N(m�, σ�2) is an example of a conjugate prior, since f �� is also normal, of the type m m 

N(m��, σ��2). 

σ2 

If one writes σ�2 = , then n� has the meaning of equivalent prior sample size and m� has the meaning 
n�

of equivalent prior sample average. 

(d) Approximate Confidence Intervals for Distribution Parameters


.


1. Classical Approach 

Problem: θ is an unknown distribution parameter. Define two sample statistics Θ�1(X1, . . . , Xn) and


Θ�2(X1, . . . , Xn) such that:


P [Θ�1(X1, . . . , Xn) < θ < Θ�2(X1, . . . , Xn)] = P ∗


where P ∗ is a given probability.
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An interval [Θ�1(X1, . . . , Xn), Θ�2(X1, . . . , Xn)] with the above property is called a confidence interval 
of θ at confidence level P ∗. 

A simple method to obtain confidence intervals is as follows. Consider a point estimation �Θ such that, 
exactly or in approximation, Θ� ∼ N(θ, σ2(θ)). If the variance σ2(θ) depends on θ, one replaces σ2(θ) 
with σ2(�Θ). Then: 

Θ� − θ


Θ) 
∼ N(0, 1)


σ(�
P [Θ� − σ(� Θ + σ(�Θ)ZP ∗/2 < θ < � Θ)ZP ∗/2] = P ∗ ⇒ 

where Zα is the value exceeded with probability α by a standard normal variable. 

Example: 

θ = m = mean of an exponential distribution. 

1
In this case, Θ� = X ∼ Gamma(m, n), where Gamma(m, n) is the distribution of the sum of n iid 

n 
exponential variables, each with mean value m. The mean and variance of Gamma(m, n) are nm 

and nm2, respectively. Moreover, for large n, Gamma(m, n) is close to N(nm, nm2). Therefore, in 

approximation, 

2m
m,X ∼ N

n 

Using the previous method, an approximate confidence interval for m at confidence level P ∗ is 

X X 
X − √

n 
· ZP ∗/2, X + √

n 
· ZP ∗/2 

2. Bayesian Approach 

In Bayesian analysis, intervals [θ�1, θ�2] that contain θ with a given probability P ∗ are simply obtained 

from the condition that: 

Fθ
��(θ�2) − Fθ

��(θ�1) = P ∗ 

where Fθ
�� is the posterior CDF of θ. 




