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1.010 - Brief Notes # 6

Second-Moment Characterization of Random Variables and Vectors.

Second-Moment(SM) and First-Order Second-Moment(FOSM)

Propagation of Uncertainty

(a) Random Variables

e Second-Moment Characterization

e Mean (expected value) of a random variable

EX]=mx = Z x;Px(x;) (discrete case)

all z;

= / xfx(z)dr (continuous case)

— 00

e Variance (second central moment) of a random variable

ok =Var[X] = E[(X —mx)*| = Y (¢; —mx)*Px(x;) (discrete case)

all xz;

0% = / (x —mx)?fx(z)dz (continuous case)

— 00

e Ezamples

e Poisson distribution

(\t)Ve At

Py (y) = "

. y=0,1,2,...



e Exponential distribution

fx(@)=Xe™™* >0

e Notation

X ~ (m,o?) indicates that X is a random variable with mean value m and variance o2.

e Other measures of location
e Mode ¥ = value that maximizes Px or fx

e Median 59 = value such that Fx(z50) = 0.5

o Other measures of dispersion

e Standard deviation

ox = /0% (same dimension as X)

o Coefficient of variation

OX
mx

Vx = (dimensionless quantity)

e Expectation of a Function of a Random Variable. Initial and Central Moments.

e Fxpected value of a function of a random variable

Let Y = ¢g(X) be a function of a random variable X. Then the mean value of Y is:



E[Y] = E[g(X)] = [Z_yfy(y)dy

Importantly, it can be shown that E[Y] can also be found directly from fx, as:

BlY] = [7 g(x)fx(z)dz

e Linearity of erpectation

It follows directly from the above and from linearity of integration that, for any constants a;

and ag and for any functions g; (X) and g2(X):

Ela191(X) + a292(X)] = a1 E[g1(X)] + a2 E[g2(X)]

e Ezxpectation of some important functions
1. E[X"] = [7 a"fx(z)dx
(called initial moments; the mean mx is also the first initial moment)

2. E[(X —mx)"] = ffooo(x —mx)"fx(x)dz

(called central moments; the variance o% is also called the second central moment)

e Consequences of Linearity of Expectation. Second-Moment(SM) Propagation of

Uncertainty for Linear Functions.

1. 0% =Var[X] = E[(X — mx)?| = E[X?] - 2mxE[X] + m% = E[X?] - m%
= E[X?% =0% +m%

2. Let Y = a + bX, where a and b are constants. Using linearity of expectation, one obtains the
following expressions for the mean value and variance of Y:
my =a+ bE[X] =a+bmx

02 = EI(Y - my)?] = 2o}



e First-Order Second-Moment(FOSM) Propagation of Uncertainty for Nonlinear

Functions

Usually, with knowledge of only the mean value and variance of X, it is impossible to calculate my
and o%.. However, a so-called first-order second-moment(FOSM) approximation can be obtained as

follows.

Given X ~ (mx,0%) and Y = g(X), a generic nonlinear function of X, find the mean value and

variance of Y.

— Replace g(X) by a linear function of X, usually by linear Taylor expansion around myx. This

gives the following approximation to g(X):

dg(X)

Y =g(X) ~g(mx) + X

(X — mx)

’mx

Then approximate values for my and o are:

2
dg(X
my = g(mx), U%/(ZZ(X)‘ )03(
mx

(b) Random Vectors

e Second-Moment Characterization. Initial and Central Moments.

Consider a random vector X with components X, Xo, ..., X,.

e Fxpected value

EX]=E| : | = : = | ! | =m (mean value vector)

o FExpected value of a scalar function of X

Let Y = g(X) be a function of X. Then, extending a result given previously for functions of

single variables, one finds that F[Y] may be calculated as:



= [ g(z)fx(z)dz
RTL

Again, it is clear that linearity applies, in the sense that, for any given constants a; and as and
any given functions g1(X) and go(X):

Ela1g1(X) + a292(X)] = a1 E[g1(X)] + a2 E[g2(X)]

e FExpectation of some special functions

e Initial moments

1. Order I: E[X;]=m;< EX]=m, i=12,...,n
2. Order 20 E[X;X;] = [ [ @z fx, x, (@, 2;)deidzy, i,j=1,2,...,n

3. Order 3:  E[X;X;Xyl=..., 4,j,k=12...,n

e Central moments
1. Order 1:  E[X; —m;] =0, i=1,2,..

2. Order 2 (covariance between two variables):

Cov[X;, X;] = —m)(X; —my)], i,7j=12,..

9

/ / i —mg)(xj —my) fx, x; (i, x)drdx;

e Covariance in terms of first and second initial moments

Using linearity of expectation,

COU[Xi,Xj] = E[(XZ — mz)(XJ m])] [X X X; mj min + mimj]
= E[XZX]] = COU[X@XJ'} + m;m;



Covariance Matrix and Correlation Coefficients

e Covariance matrix

COU[XZ‘,X]‘]
27 =
(Zvj = 1727 ,TL)
= E[(X - mg)(X - mQ)T]
- Forn = 2:
o? Cov[ X7, X5]
Ly = 2
Cov[Xa, X1] o3

- X is the matrix equivalent of 0%

- Zé is symmetrical: Z& = Zg

e Correlation coefficient between two variables

pijzw, ,7=1,2,...,n, —-1<p; <1
003

- pij is a measure of linear dependence between two random variables;

- pij has values between -1 and 1, and is dimensionless.
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Joint density-funclion contours of correlaled random vanables. (a) Positive correlation
p = O; (b) high positive correlalion p = 1 (€) negative comrelation p < 0; {d) (e) low
correlation p = O, () large negative correlation p = -1.

e SM Propagation of Uncertainty for Linear Functions of Several Variables

n

Let Y =ap+ > a;X; = ap + a1 X1 + as Xa + - - - + a, X, be a linear function of the vector X. Using
i=1

linearity of expectation, one finds the following important results:

n n
E[Y] = E |:a0 —+ Z GJZXZ:| = Qg —+ Z a;m;

i=1 =1

VarlY] =} a?Var(X;]+25 > aa;Cov[X;, X;]

i=1 i=1j=i+1



e Forn = 2:
Y =ag+ a1 X1 +asXs
E[Y] = Qo + alE[Xl] + CLQE[XQ]

Var[Y] = a?Var[X1] + a3Var[Xs] + 2a1a2Cov[ X7, X5

e For uncorrelated random variables:

VarlY] = Zf: a?Var[X;]

=1

e Extension to several linear functions of several variables

Let Y be a vector whose components Y; are linear functions of a random vector X. Then, one

can write Y = a+ B X, where g is a given vector and B is a given matrix. One can show that:

e FOSM Propagation of Uncertainty for Nonlinear Functions of Several Variables

Let X ~ (m X5 Zé) be a random vector with mean value vector my and covariance matrix X y.
Consider a nonlinear function of X, say ¥ = g(X). In general, my and o% depend on the entire
joint distribution of the vector X. However, simple approximations to my and o2 are obtained by
linearizing ¢g(X) and then using the exact SM results for linear functions. If linearization is obtained
through linear Taylor expansion about my, then the function that replaces g(X) is:

92 = glimy) + 3= 22

(X —mi)

X=my

where m; is the mean value of X;. The approximate mean and variance of Y are then:

my = g(mX)v



This way of propagating uncertainty is called FOSM analysis.





