MIT OpenCourseWare http://ocw.mit.edu

1.010 Uncertainty in Engineering Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu.terms.

1.010 - Brief Notes # 5 Functions of Random Variables and Vectors

(a) Functions of One Random Variable

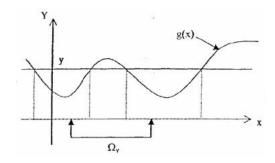
• Problem

Given the CDF of the random variable $X, F_X(x)$, and a deterministic function Y = g(x), find the (derived) distribution of the random variable Y.

• General Solution

Let $\Omega_Y = \{x : g(x) \leq y\}$. Then:

$$F_Y(y) = P[Y \le y] = P[x \in \Omega_Y] = \int_{\Omega_Y} f_X(x) dx$$



• Special Cases

• Linear Functions

$$Y = g(x) = a + bx$$

If b > 0:

$$X(y) = \frac{y-a}{b}; \quad \Omega_Y = \{x : a+bx \le y\} = \left(-\infty, \frac{y-a}{b}\right]$$
$$F_Y(y) = P[x \in \Omega_Y] = F_X\left(\frac{y-a}{b}\right)$$
$$f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}F_X\left(\frac{y-a}{b}\right) = \frac{1}{b}f_X\left(\frac{y-a}{b}\right)$$

If b < 0:

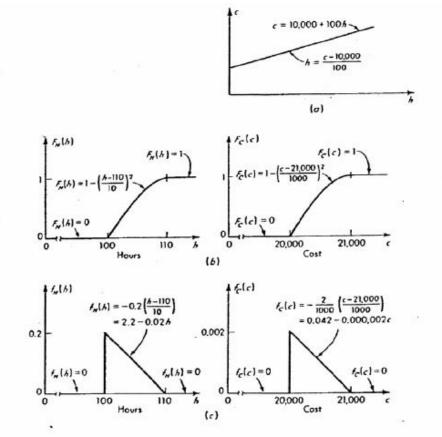
$$\Omega_Y = \left[\frac{y-a}{b}, \infty\right)$$

$$F_Y(y) = 1 - F_X\left(\frac{y-a}{b}\right)$$

$$f_Y(y) = -\frac{1}{b}f_X\left(\frac{y-a}{b}\right) = \frac{1}{|b|}f_X\left(\frac{y-a}{b}\right)$$

For any $b \neq 0$:

$$f_Y(y) = \frac{1}{|b|} f_X\left(\frac{y-a}{b}\right)$$



Example of linear transformation (b > 0): derived distributions, construction-cost illustration, C = 10,000 + 100H. (a) Functional relationship between cost and time; (b) cumulative distribution function of H, given, and C, derived; (c) probability density function of H, given, and C, derived.

• General monotonic (one-to-one) functions

• Monotonically increasing functions

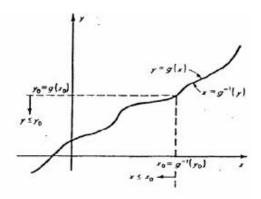
$$F_Y(y) = F_X[x(y)]$$

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \frac{dx(y)}{dy} \cdot f_X[x(y)]$$

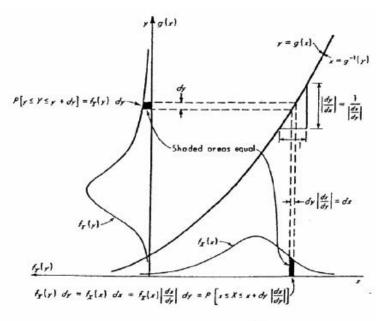
ullet Monotonically decreasing functions

$$F_Y(y) = 1 - F_X[x(y)]$$

$$f_Y(y) = \left| \frac{dx(y)}{dy} \right| \cdot f_X[x(y)]$$



A monotonically increasing oneto-one function relating Y to X.



Graphical interpretation of
$$f_{Y}(y) = \frac{dx}{dy} f_{X}(x)$$
.

• Examples of Monotonic Transformations

Consider an exponential variable $X \sim EX(\lambda)$ with cumulative distribution function $F_X(x) = 1 - e^{-\lambda x}, x \geq 0.$

Exponential, Power and Log Functions

• Exponential Functions

Suppose $Y = e^X$, $\Rightarrow x = ln(y)$, $y \ge 0$. This is a monotonic increasing function, and $F_Y(y) = F_X(x(y)) = 1 - e^{-\lambda ln(y)} = 1 - y^{-\lambda}$. This distribution is known as the (strict) Pareto Distribution.

• Power Functions

Suppose $Y = X^{1/\alpha}$, $\alpha > 0$, $\Rightarrow x = ln(y)$, $y \ge 0$. This is a monotonic increasing function, and $F_Y(y) = F_X(x(y)) = 1 - e^{-\lambda y^{\alpha}}$. This distribution is known as the Weibull (Extreme Type III) Distribution.

• Log Functions

Suppose $Y = -ln(X), \Rightarrow x = e^{-y}, -\infty \le y \le \infty$. This is a monotonic decreasing function, and $F_Y(y) = 1 - F_X(x(y)) = e^{-\lambda e^{-y}}$. This distribution is known as the Gumbell (Extreme Type I) Distribution.

(b) Functions of Two or More Random Variables

• Problem

Given the JCDF of the random vector $\begin{bmatrix} X \\ Y \end{bmatrix}$, $F_{X,Y}(x,y)$, and a deterministic function Z = g(x,y), find the (derived) distribution of the random variable Z.

• General Solution

Let
$$\Omega_Z=\{x,y:g(x,y)\leq z\}$$
. Then:
$$F_Z(z)=P[Z\leq z]=P[(x,y)\in\Omega_Z]=\iint_{\Omega_Z}f_{X,Y}(x,y)dxdy$$

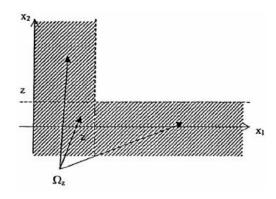
• Special Cases

• Minimum/maximum functions

i.e.
$$Z=Min[X_1,X_2,\ldots,X_n]$$
 (eg. minimum strength) or $Z=Max[X_1,X_2,\ldots,X_n]$ (eg. maximum load)

•
$$Z=Min[X_1,X_2,\ldots,X_n]$$
. For $n=2,$
$$F_Z(z)=P[Z\leq z]=\iint_{\Omega_Z}f_{X_1,X_2}(x_1,x_2)dx_1dx_2, \quad \text{with } \Omega_Z \text{ shown in figure}$$

$$=1-\int_z^\infty dx_1\int_z^\infty f_{X_1,X_2}(x_1,x_2)dx_2$$



If X_1 and X_2 are independent:

$$\int_{z}^{\infty} dx_{1} \int_{z}^{\infty} f_{X_{1},X_{2}}(x_{1},x_{2}) dx_{2} = [1 - F_{X_{1}}(z)][1 - F_{X_{2}}(z)]$$

Therefore,

$$F_Z(z) = 1 - [1 - F_{X_1}(z)][1 - F_{X_2}(z)]$$

For n iid variables:

$$F_Z(z) = P[Z \le z] = 1 - P[(X_1 > z) \cap \dots \cap (X_n > z)]$$

= 1 - [1 - F_X(z)]ⁿ

or, with
$$G_X(x) = 1 - F_X(x)$$
,

$$G_Z(z) = P[Z > z] = [G_X(z)]^n$$

 $f_Z(z) = \frac{d}{dz} F_Z(z) = -\frac{d}{dz} G_Z(z) = n[G_X(z)]^{n-1} f_X(z)$

•
$$Z = Max[X_1, X_2, \dots, X_n]$$

$$\begin{split} F_Z(z) &= P\left[\bigcap_i (X_i \leq z)\right] = F_{\underline{X}} \begin{bmatrix} z \\ \vdots \\ z \end{bmatrix} \\ &= \prod_i F_{X_i}(z) \quad (\text{if } X_i\text{'s are independent}) \\ &= [F_X(z)]^n \quad \text{and} \quad f_Z(z) = n[F_x(z)]^{n-1} f_X(z) \quad (\text{if } X_i\text{'s are iid}) \end{split}$$

• <u>Linear transformations</u>

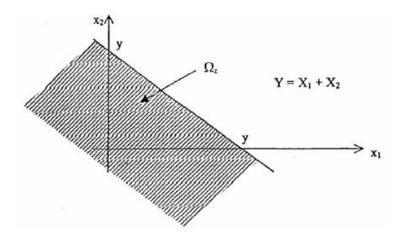
$$Y = \sum_{i} a_i x_i$$

• Simplest case: $Y = X_1 + X_2$

$$F_Y(y) = P[Y \le y] = P[x_1 + x_2 \le y] = \iint_{x_1 + x_2 \le y} f_{X_1, X_2}(x_1, x_2) dx_1 dx_2$$

$$= \int_{-\infty}^{\infty} dx_2 \int_{-\infty}^{y - x_2} f_{X_1, X_2}(x_1, x_2) dx_1$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X_1, X_2}(y - x_2, x_2) dx_2$$



If X_1 and X_2 are independent, then:

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X_1}(y - x_2) f_{X_2}(x_2) dx_2$$
 (convolution)

• Example: Derivation of Gamma distribution

Consider $Y=X_1+X_2$, where X_1 and X_2 are iid exponential , with density:

$$f_{X_i} = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Then,

$$f_Y(y) = \int_0^\infty f_X(y - x_1) f_X(x_1) dx_1$$

= $\lambda^2 y e^{-\lambda y}$ (Rayleigh or Gamma (2) distribution)

In general, for any n, the probability density of $Y = X_1 + X_2 + \ldots + X_n$, where X_i are iid exponential, is:

$$f_Y(y) = \frac{\lambda(\lambda y)^{n-1}e^{-\lambda y}}{\Gamma(n)}, \quad y \ge 0, \text{ where } \Gamma(n) = (n-1)!$$

(Gamma(n) distribution)

Note: For n = 1, the Gamma distribution reduces to the exponential distribution.

