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1.010 - Brief Notes # 2
Random Variables: Discrete Distributions

e Discrete Distributions
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Discrete distributions
(a) Probability Mass Function PMF
(b) Cumulative Distribution Function CDF



e Examples of discrete probability distributions

e Bernoulli distribution F’

1, if an event of interest occurs (success)

Y= q

0, if the event does not occur (failure)
Y is called a Bernoulli or indicator variable
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Sequence of Bernoulli trials
N = number of trials at which first success occurs
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Geometric Distribution

e Binomial distribution

Consider a sequence of Bernoulli trials
Let M = number of successes in n trials
M=1,2,3,....n
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where L (") = binomial coefficient
ml(n —m)! m

where p and ¢ = 1 — p are the probabilities of success and failure in individual Bernoulli trials

In particular, the probability of no success is:
Py(0)=q¢"=(1-p)"
Py(0)=1—pn,ifpn << 1

and the probability of all successes is:

Py(n) =p"
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Binomial distribution B{n,p)

e Poisson distribution

Assumptions:

1. In a time interval of short duration A, the probability of one occurrence is AA, where
A = occurrence rate (expected number of occurrences per unit time).

2. The probability of two or more occurrences in A is negligible.

3. The occurrences in non-overlapping intervals are independent.

Under these conditions, the number of occurrences in each interval of duration A is either 0
or 1, with probability p = AA of being 1. Let Y = no. of occurrences in [0, t], where ¢t = nA.

Then Y has binomial distribution with probability mass function
Py (y) = (Z)pyqnfy, where p = AA = )\%
Asn— o0,

Py (y) = ()‘t):i,eﬂt (Poisson PMF)
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Poisson distribution P(A1)





