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Example Application 19 
(Parameter estimation) 

COMPARISON OF ESTIMATORS FOR THE UPPER 

LIMIT OF THE UNIFORM DISTRIBUTION


Consider a random variable X with uniform distribution between 0 and b. The PDF and 

CDF of X are 

1/b, for 0 ≤ x ≤ b
fX(x) =  

0, elsewhere


0, for x ≤ 0 (1)



FX(x) = x /b, for 0 ≤ x ≤ b

1, for x ≥ b
 

The mean value and variance of X are m = b/2 and σ2 = b2 /12. 

Suppose that the upper limit b is unknown and needs to be estimated from a random 

sample {X1,X2,...,Xn} from the population of X. Often used methods for problems of 

this type are the method of moments (MOM), maximum likelihood (ML), and Bayesian 

estimation. Here we compare these parameter estimation procedures in the context of the 

present problem. 

1. Method of Moments (MOM) 

Since the mean value of X is m = b/2, the method of moments produces the following 

estimator of b: 

b̂ 
MOM = 2X = 

2 ∑ 
n 

Xi (2)
n i=1 
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This estimator is unbiased, since E[b̂ 
MOM ] = 2m = b , and has variance Var[b̂ 

MOM ] 

=
 

2 

 
2
nσ2 = 

b2 
, where we have used σ2 = b2 /12. 

n 3n 

A problem with the method of moments is that b̂ 
MOM  may be smaller than the largest 

value in the sample, Xmax = max{X1,X2,...,Xn}. In this case it makes no sense to use 

b̂ 
MOM . 

2. Maximum Likelihood (ML) 

The previous problem can be avoided by using the method of maximum likelihood (ML). 

The likelihood function has the form 

n 1

A(b | X , X ,..., X )∝ ∏f (X | b) ∝ , for b ≥X
1 2 n 

i=1 
X i bn max (3) 

0, for b < Xmax 

The function in Eq. 3 is maximum for b̂ 
ML = X max . Since Xmax is the maximum of n iid 

variables with the distribution in Eq. 1, the distribution of this estimator has the following 

CDF and PDF: 

0, for x ≤ 0

 


Fb̂ 
ML 

(x) = (x /b)n, for 0 ≤ x ≤ b

 

1, for x ≥ b 

(4) 
 n
 xn−1, for 0 ≤ x ≤ b

fb̂ 
ML 

(x) = bn



0, elsewhere 
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The mean value and variance of b̂ 
ML  are 

∞ b 
E[b̂ 

ML ] = ∫ xfb̂ 
ML 

(x)dx = ∫ 
b
n
n x

ndx = 
n

n 
+ 1

b 
0 0 

Var[b̂ 
ML ] = E[b̂ 

ML
2 ] − (E[b̂ 

ML ])2 = ∫ 
b 

b
n
n x

n+1dx − 
 n b 

2 
(5)

 n + 1 0 

=  
 n 

− 
n2 

 
 
b2 = 

n b2 

n + 2 (n + 1)2  (n + 2)(n + 1)2 

A comparison of the variance prefactors, 1 for b̂ 
MOM  and n for b̂ 

ML , is3n (n + 2)(n + 1)2

shown in Figure 1. As one can see, the variance of b̂ 
ML  is smaller than that of b̂ 

MOM , 

especially for large n. In this regard, notice that the variance of b̂ 
MOM  depends on n like 

1/n, whereas (for large n) the variance of b̂ 
ML  has an unusual 1/n2 behavior. 

n 

1 10 100 1000 10000 

Figure 1. Comparison of the variance prefactors of b̂ 
MOM , b̂ 

ML , and b̂'ML 
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While the above feature makes b̂ 
ML  a more attractive estimator than b̂ 

MOM , a drawback 

of b̂ 
ML  is that it is biased. To eliminate the bias, one may use the modified ML estimator 

b̂'ML = 
n +1b̂ 

ML = 
n +1Xmax  (6)

n n 

whose mean value and variance are 

E[b̂'ML ] = b 

(n +1)2 n 1 (7)
Var[b̂'ML ] = n2 (n + 2)(n +1)2 b

2 = 
n(n + 2)

b2 

1Also the variance prefactor in Eq. 7 is shown in Figure 1. As one can see, this 
n(n + 2) 

prefactor is intermediate between those of b̂ 
MOM  and b̂ 

ML . 

Estimators that are not necessarily unbiased (here b̂ 
MOM  and b̂'ML are unbiased, but 

b̂ 
ML  is biased) are often ranked based on the mean square error (MSE), which is the 

second initial moment of the error e = b̂ − b. Hence MSE = E[e2] = σ2
ˆ + (E[b̂ − b])2. For b 

the above estimators, MSE is given by: 

MSE[b̂ 
MOM ] = Var[ˆ = 

1 b2bMOM ] 
3n 

MSE[b 'ˆ 
ML ] = Var[b̂'ML ] = 

n(n 
1 
+ 2) 

b2  (8) 

MSE[b̂ 
ML ] = Var[b̂ 

ML ] + (E[b̂ 
ML ] − b)2 

 n 1  2 
= 

(n + 2)(n +1)2 + 
(n +1)2  

b2 = 
(n +1)(n + 2)

b2 
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The prefactors of b2 in these MSE expressions are compared in Figure 2. Notice that, 

except for n = 1, the modified ML estimator b̂'ML has the best performance. 

n 
1 10 100 1000 10000 

Figure 2. Comparison of the variance prefactors of b̂ 
MOM , b̂ 

ML , and b̂'ML in the MSE 

expressions 

3. Bayesian Estimation 

Bayesian analysis requires specification of a prior distribution for b, say in the form of a 

prior density f'(b), combination of the prior density with the likelihood function in Eq. 3 

to obtain the posterior density f"(b) ∝ f '(b) ⋅ l(b), and finally the choice of an estimator of 

b. The estimator may be based on f"(b) (for example one might use the a-posteriori mode 

or the a-posteriori mean) or calculated by minimizing an expected loss function. 

Consider for example a prior density of the gamma type, 

f'(b) ∝bα−1e−b/β , b ≥ 0 (9) 
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where α, β > 0 are parameters. Then the posterior density of b is 

f"(b) ∝ b(α−n)−1e−b/β , for b ≥ Xmax  (10)  

Ignoring for the moment the constraint b ≥ Xmax , the function in Eq. 10 is maximum for 

b = max{0, β(α −  n −1)}. We conclude that, if one estimates b as the value that maximizes 

f"(b), the Bayesian estimator b̂ 
Bayes is given by 

b̂ 
Bayes = max{Xmax, β(α −  n −1)} (11) 

It is interesting that b̂ 
Bayes is the same as b̂ 

ML  when β(α − n −1) ≤ Xmax , which happens 

for any given α and β if n is sufficiently large. 

Problem 19.1 

Implement the previous estimators for the following samples: 

Sample 1: {5.2, 0.8, 2.7, 3.1, 6.4, 3.8, 1.7, 6.3} 

Sample 2: {5.2, 0.8, 2.7, 3.1, 6.4, 3.8, 1.7, 16.3} 

For the Bayesian estimator, use α = 20 and β = 1 in the prior. Comment on the results. 

Do you find anything suspicious in the second sample? 
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