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Example Application 15 
(Conditional second-moment analysis) 

UNCERTAINTY UPDATING USING NOISY 


OBSERVATIONS


One of the uses of conditional distributions is in updating uncertainty on a variable of 

interest X based on observation of one or more other variables. For example, one may 

want to update uncertainty on rainfall tomorrow based on observation of rainfall today, 

the strength of beam 1 based on observation of the strength of beam 2, or soil 

compressibility at location A given soil compressibility at some other location B. 

In certain cases, the observed variable is itself a measurement of X. For example, 

one may measure the strength of a concrete column by some nondestructive test, measure 

topographic elevation at a point using a satellite instrument with limited accuracy, or 

sample the water of a stream with an imprecise device to determine its degree of 

contamination. In all these cases, the measurement is not exact. We want to see how, 

based on such “noisy data”, one can update uncertainty on the quantity of interest X. 

The method described below is exact if the random variables involved are 

normally distributed, but is often used as an approximation for variables with any 

distribution. 

Conditional Distributions of Variables with Joint Normal Distribution 

Let X1 and X2 be jointly normal variables with mean values m1 and m2, variances σ1
2 and 

σ2
2, and correlation coefficient ρ. 0ne can show that the conditional distribution of 

(X1|X2=x2) is also normal, with mean value m1|2 and variance σ1|2 
2 given by 

σ1m1|2 = m1 +ρ
σ2 

(x2 − m2 ) 
     (1)  

σ1
2
|2 = σ1

2(1 − ρ2 )
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Notice that the conditional mean depends on the observed value x2 of X2, whereas the 

conditional variance does not. Moreover, the conditional variance differs from the 

unconditional variance by the factor (1 - ρ2), which is smaller than 1 whenever X1 and X2 

are dependent. 

Application to Noisy Observations 

Next we show how Eq. 1 can be used to update uncertainty on a quantity of interest X 

(e.g., X = load bearing capacity of the soil or concentration of a pollutant at a given 

location) after making a measurement of it. 

The quantity of interest, X, is initially uncertain with mean value m and variance 

σ2. To reduce this uncertainty (and for example determine whether X is below a critical 

level x* with probability at least P*), a measurement Z of X is made.  If the measurement 

had no error, then X could be recovered exactly from Z, but in practice measurements are 

affected by errors (they are “noisy”). A simple model with noise is the so-called linear 

model, according to which Z is related to X as 

Z = a + bX + ε       (2)  

where a and b are given deterministic constants and ε is an error term independent of X, 

with mean value zero and variance σε 
2. The problem is to update uncertainty on X based 

on the observed value of Z, say z. 

To use the conditional moment results in Eq. 1, we need to find the mean value 

and variance of Z and the correlation coefficient between X and Z.  After this is done, we 

may rename X → X1 and Z → X2 and use that equation. Second-moment propagation of 

uncertainty through linear functions gives 

mZ = a + bm

 σZ
2 = b2σ2 + σε 

2       (3)

  Cov[X,Z] = bσ2 
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Using these results and the relationships 

σ1 ρσ1σ2 Cov[X1,X2 ]

ρ

σ2 
=

σ2
2 

=
Var[X2]


σ1
2(1− ρ2 ) = Var[X1] −

{Cov[X1,X2 ]}2	    (4)

Var[X2 ]

 one obtains from Eq. 1: 

E X Z  = z]= m + h 

 
z −

b
a − m


 	     (5)  

[ 

Var XZ = z]= σ2(1− h)[ 

 σ2 
-1 

 2 2  . Like Eq. 1, Eq. 5 holds exactly if both X and ε have normal where h= 1+ ε  
 b σ  

distribution and in approximation for other distributions. 

A key role in Eq. 5 is played by the quantity h, for which some special cases may 

be noted: 

1. suppose that 	σε 
2 = 0, or more in general that σε 

2 << b2σ2. This means that 

observations are without error or the contribution from X to the variance of Z far 

exceeds the contribution from ε (high “signal-to-noise ratio”). In this case h = 1 and 

Eq. 5 gives E[X|Z = z] = (z - a)/b and Var[X|Z = z] = 0.  This is of course the 

solution to the deterministic problem; 

2. At the other extreme is the case of very noisy measurements, when σε 
2 >> b2σ2. In 

this case h is close to zero and Eq. 5 gives E[X|Z = z] = m and Var[X|Z = z] = σ2, i.e. 

no change in the state of uncertainty on X as a result of observing Z. 
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Problem 15.1 

(a) Cases of practical interest are intermediate between the above two limiting cases.  	To 

understand the role of different factors in the informativeness of a linear experiment, 

set b = 1 and plot the posterior-to-prior variance ratio γ = Var[X|Z = z]/σ2 against 

σε 
2/b2σ2. Notice that γ is a measure of the information value of the experiment and 

that the ratio σε 
2/b2σ2 can be decreased by either reducing the variance of the 

measurement error σε 
2 or increasing the “gain” b. 

(b) Think of an application of the observation model presented above to a context of 

interest to you. Postulate a plausible prior uncertainty state and realistic observation 

model parameters. Derive the uncertainty updating equation and the posterior 

variance using Eq. 5. 

Problem 15.2 

(a) Extend the previous analysis to the vector case, i.e. consider X to be a vector with n 

components and Z to be a vector with r components. Assume a linear relation 

between X and Z of the type Z = a + BX + ε, where a is a given vector, B is a given 

matrix, and ε is a random measurement error vector. Assume that X has joint normal 

distribution, ε has joint normal distribution, and X and ε are independent. 

(b) Extend the results for Part (a) to include dependence between X and ε. 

Best Linear Unbiased Estimation (BLUE) Theory 

Equation 1 is often used also when X1 and X2 do not have joint normal distribution.  In 

that case Eq. 1 may be regarded as an approximation or may be used with a different 

interpretation. Specifically, we show that, irrespective of the type of distribution, the 

expression for the conditional mean in Eq. 1 has the meaning of best linear unbiased 

estimator of X1 from X2 and the conditional variance in Eq. 1 has the meaning of 

associated estimation error variance. 
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Suppose that X1 and X2 have mean values, variances, and correlation coefficient 

as above, but are not necessarily normally distributed.  Based on the observation of X2, 

we form a linear estimator of X1, X̂ 
1 = a + bX2, and look for coefficients a and b such 

that 

1. The estimator is (unconditionally) unbiased, i.e. E[ X̂ 
1] = E[X1] = m1. This gives a + 

bE[X2] = a + bm2 = m1. Therefore, a = m1 - bm2. 

2. Among all linear unbiased estimators, X̂ 
1 has minimum error variance.  The error is 

e = X̂ 
1 - X1 and its variance is σe

2 = var[bX2 − X1] = σ1
2 + b2σ2

2 − 2bρσ1σ2. Taking 

the derivative with respect to b and setting it to zero gives 2bσ2
2 − 2ρσ1σ2 = 0. 

Hence b = ρ σ1/σ2 and a = m1 - ρ m2 (σ1/σ2). 

We conclude that the BLUE estimator of X1 from X2 is 

X̂ 
1 = m1 + ρ(σ1/σ2)(x2 - m2) (6) 

The associated error variance is obtained by substituting b = ρ σ1/σ2 into the expression 

for σe
2. This gives 

σe
2 = σ1

2(1 - ρ2)       (7)  

Comparison of Eqs. 6 and 7 with Eq. 1 shows that the BLUE estimator for any joint 

distribution of X1 and X2 is identical to the conditional mean m1|2 for jointly normal 

variables and that the conditional variance in Eq. 1 is also the error variance of the BLUE 

estimator. This correspondence significantly broadens the applicability of the normal 

distribution results. 
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